cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338078 Odd composite integers m such that A085447(m) == 6 (mod m).

Original entry on oeis.org

57, 185, 385, 481, 629, 721, 779, 1121, 1441, 1729, 2419, 2737, 5665, 6721, 7471, 8401, 9361, 10465, 10561, 11285, 11521, 11859, 12257, 13585, 14705, 15281, 16321, 16583, 18849, 24721, 25345, 25441, 25593, 30745, 33649, 35219, 36481, 36581, 37949, 38665, 39169
Offset: 1

Views

Author

Ovidiu Bagdasar, Oct 08 2020

Keywords

Comments

If p is a prime, then A085447(p)==6 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6, b=-1, V(m) recovers A085447(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)

Crossrefs

Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335670 (a=4), A335671 (a=5).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[#, 6] - 6, #] &]

Extensions

More terms from Amiram Eldar, Oct 09 2020