A338101 Smallest odd prime dividing n is a(n)-th prime, or 0 if no such prime exists.
0, 0, 2, 0, 3, 2, 4, 0, 2, 3, 5, 2, 6, 4, 2, 0, 7, 2, 8, 3, 2, 5, 9, 2, 3, 6, 2, 4, 10, 2, 11, 0, 2, 7, 3, 2, 12, 8, 2, 3, 13, 2, 14, 5, 2, 9, 15, 2, 4, 3, 2, 6, 16, 2, 3, 4, 2, 10, 17, 2, 18, 11, 2, 0, 3, 2, 19, 7, 2, 3, 20, 2, 21, 12, 2, 8, 4, 2, 22, 3, 2, 13, 23, 2, 3, 14, 2, 5, 24, 2
Offset: 1
Keywords
Examples
70 = 2 * 5 * 7 = prime(1) * prime(3) * prime(4), 3 < 4, so a(70) = 3.
Links
Programs
-
Maple
f:= proc(n) local w; w:= numtheory:-factorset(n) minus {2}; if w = {} then 0 else numtheory:-pi(min(w)) fi end proc: map(f, [$1..100]); # Robert Israel, Nov 13 2020
-
Mathematica
Array[If[Or[# == 1, ! IntegerQ@ #], 0, PrimePi@ #] &@ SelectFirst[FactorInteger[#][[All, 1]], OddQ] &, 90] (* Michael De Vlieger, Nov 13 2020 *)
-
PARI
a(n) = my(v = select(x->((x%2)==1), factor(n)[, 1])); if (#v, primepi(vecmin(v)), 0); \\ Michel Marcus, Nov 13 2020