A338133 Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).
6, 20, 28, 70, 945, 1575, 2205, 88, 550, 3465, 5775, 7425, 8085, 12705, 104, 572, 650, 1430, 2002, 4095, 6435, 6825, 9555, 15015, 78975, 81081, 131625, 189189, 297297, 342225, 351351, 570375, 63126063, 99198099, 117234117, 272, 748, 1870, 2210, 5355, 8415, 8925, 11492
Offset: 2
Examples
Row 1 is empty as there exists no primitive nondeficient number of the form prime(1)^k = 2^k. Row 2 is (6) as 6 is the only primitive nondeficient number of the form prime(1)^k * prime(2)^m = 2^k * 3^m that is a multiple of prime(2) = 3. Irregular triangle T(n, k) begins: n prime(n) row n 2 3 6; 3 5 20; 4 7 28, 70, 945, 1575, 2205; 5 11 88, 550, 3465, 5775, 7425, 8085, 12705; ... See also the factorization of initial terms below: 6 = 2 * 3, 20 = 2^2 * 5, 28 = 2^2 * 7, 70 = 2 * 5 * 7, 945 = 3^3 * 5 * 7, 1575 = 3^2 * 5^2 * 7, 2205 = 3^2 * 5 * 7^2, 88 = 2^3 * 11, 550 = 2 * 5^2 * 11, 3465 = 3^2 * 5 * 7 * 11, 5775 = 3 * 5^2 * 7 * 11, 7425 = 3^3 * 5^2 * 11, 8085 = 3 * 5 * 7^2 * 11, 12705 = 3 * 5 * 7 * 11^2, 104 = 2^3 * 13, 572 = 2^2 * 11 * 13, 650 = 2 * 5^2 * 13, 1430 = 2 * 5 * 11 * 13, 2002 = 2 * 7 * 11 * 13, 4095 = 3^2 * 5 * 7 * 13, ...
Links
- L. E. Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors, Amer. J. Math., 35 (1913), 413-426.
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
Programs
-
PARI
rownupto(n, u) = { my(res = List(), pr = primes(n), e = vector(n, i, logint(u, pr[i]))); vu = vector(n, i, [0, e[i]]); vu[n][1] = 1; forvec(x = vu, c = prod(i = 1, n, pr[i]^x[i]); if(c <= u && isprimitive(c), listput(res, c) ) ); Set(res) } isprimitive(n) = { my(f = factor(n), c); if(sigma(f) < 2*n, return(0)); for(i = 1, #f~, c = n / f[i,1]; if(sigma(c) >= c * 2, return(0) ) ); 1 } for(i = 2, 7, print(rownupto(i, 10^9)))
Comments