cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338133 Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).

Original entry on oeis.org

6, 20, 28, 70, 945, 1575, 2205, 88, 550, 3465, 5775, 7425, 8085, 12705, 104, 572, 650, 1430, 2002, 4095, 6435, 6825, 9555, 15015, 78975, 81081, 131625, 189189, 297297, 342225, 351351, 570375, 63126063, 99198099, 117234117, 272, 748, 1870, 2210, 5355, 8415, 8925, 11492
Offset: 2

Views

Author

David A. Corneth and Peter Munn, Oct 11 2020

Keywords

Comments

For definitions and further references/links, see A006039, the main entry for primitive nondeficient numbers.
Rows are finite: row n is a subset of the divisors of any of the products formed by multiplying 2^(A035100(n)-1) by a member of the first n finite sets described in the Dickson reference.
Column 1 includes the even perfect numbers.
The largest number in rows 2..n (therefore the largest that is prime(n)-smooth) is A338427(n). - Peter Munn, Sep 07 2021

Examples

			Row 1 is empty as there exists no primitive nondeficient number of the form prime(1)^k = 2^k.
Row 2 is (6) as 6 is the only primitive nondeficient number of the form prime(1)^k * prime(2)^m = 2^k * 3^m that is a multiple of prime(2) = 3.
Irregular triangle T(n, k) begins:
  n   prime(n)  row n
  2      3      6;
  3      5      20;
  4      7      28, 70, 945, 1575, 2205;
  5     11      88, 550, 3465, 5775, 7425, 8085, 12705;
  ...
See also the factorization of initial terms below:
      6 = 2 * 3,
     20 = 2^2 * 5,
     28 = 2^2 * 7,
     70 = 2 * 5 * 7,
    945 = 3^3 * 5 * 7,
   1575 = 3^2 * 5^2 * 7,
   2205 = 3^2 * 5 * 7^2,
     88 = 2^3 * 11,
    550 = 2 * 5^2 * 11,
   3465 = 3^2 * 5 * 7 * 11,
   5775 = 3 * 5^2 * 7 * 11,
   7425 = 3^3 * 5^2 * 11,
   8085 = 3 * 5 * 7^2 * 11,
  12705 = 3 * 5 * 7 * 11^2,
    104 = 2^3 * 13,
    572 = 2^2 * 11 * 13,
    650 = 2 * 5^2 * 13,
   1430 = 2 * 5 * 11 * 13,
   2002 = 2 * 7 * 11 * 13,
   4095 = 3^2 * 5 * 7 * 13,
  ...
		

Crossrefs

A000040, A006530 are used to define this sequence.
Permutation of A006039.
A047802\{12}, A308710 are subsequences.

Programs

  • PARI
    rownupto(n, u) = { my(res = List(), pr = primes(n), e = vector(n, i, logint(u, pr[i]))); vu = vector(n, i, [0, e[i]]); vu[n][1] = 1; forvec(x = vu, c = prod(i = 1, n, pr[i]^x[i]); if(c <= u && isprimitive(c), listput(res, c) ) ); Set(res) }
    isprimitive(n) = { my(f = factor(n), c); if(sigma(f) < 2*n, return(0)); for(i = 1, #f~, c = n / f[i,1]; if(sigma(c) >= c * 2, return(0) ) ); 1 }
    for(i = 2, 7, print(rownupto(i, 10^9)))

Formula

A006530(T(n, k)) = A000040(n).
T(n, 1) = A308710(n-1) [provided there is no least deficient number that is not a power of 2, as described in A000079].
For m >= 1, T(A059305(m), 1) = A000668(m) * 2^(A000043(m)-1) = A000668(m) * A061652(m).