A338137 Lexicographically earliest sequence of distinct positive integers such that the nested cube root (a(n) + (a(n-1) + ... + (a(1))^(1/3)...)^(1/3))^(1/3) is an integer.
1, 7, 6, 25, 5, 62, 4, 123, 3, 214, 2, 341, 20, 24, 61, 23, 122, 22, 213, 21, 340, 57, 60, 121, 59, 212, 58, 339, 118, 120, 211, 119, 338, 209, 210, 337, 336, 505, 19, 509, 56, 508, 117, 507, 208, 506, 335, 722, 18, 726, 55, 725, 116, 724, 207, 723, 334, 993, 17, 997, 54, 996
Offset: 1
Keywords
Crossrefs
Cf. A323635 (similar definition with square roots).
Programs
-
PARI
lista(nn) = {my(va = vector(nn), lastcb); va[1] = 1; lastcb = 1; for (n=2, nn, my(k = ceil(sqrtn(sqrtnint(lastcb, 3), 3))); while (#select(x->(x==(k^3-sqrtnint(lastcb, 3))), va), k++); va[n] = k^3-sqrtnint(lastcb, 3); lastcb = k^3;); va; } \\ Michel Marcus, Oct 13 2020
-
Python
myList = [1] s = 1 t = 0 for n in range(9999): b = 2 while t == 0: if(b**3-s > 0 and not b**3-s in myList): myList.append(b**3-s) s = b t = 1 else: b += 1 t=0 print("myList: ",myList)
Comments