A338171 a(n) is the sum of those divisors d of n such that tau(d) divides sigma(d).
1, 1, 4, 1, 6, 10, 8, 1, 4, 6, 12, 10, 14, 22, 24, 1, 18, 10, 20, 26, 32, 34, 24, 10, 6, 14, 31, 22, 30, 60, 32, 1, 48, 18, 48, 10, 38, 58, 56, 26, 42, 94, 44, 78, 69, 70, 48, 10, 57, 6, 72, 14, 54, 91, 72, 78, 80, 30, 60, 140, 62, 94, 32, 1, 84, 142, 68, 86
Offset: 1
Examples
a(6) = 10 because there are 3 arithmetic divisors of 6 (1, 3 and 6): sigma(1)/tau(1) = 1/1 = 1; sigma(3)/tau(3) = 4/2 = 2; sigma(6)/tau(6) = 12/4 = 3. Sum of this divisors is 10.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[&+[d: d in Divisors(n) | IsIntegral(&+Divisors(d) / #Divisors(d))]: n in [1..100]];
-
Maple
f:= proc(n) uses numtheory; convert(select(t -> sigma(t) mod tau(t) = 0, divisors(n)),`+`) end proc: map(f, [$1..100]); # Robert Israel, Oct 27 2020
-
Mathematica
a[n_] := DivisorSum[n, # &, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2020 *)
-
PARI
a(n) = sumdiv(n, d, d*!(sigma(d) % numdiv(d))); \\ Michel Marcus, Oct 15 2020
Formula
a(p) = p + 1 for odd primes p (A065091).
Comments