cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338172 a(n) is the product of those divisors d of n such that tau(d) divides sigma(d).

Original entry on oeis.org

1, 1, 3, 1, 5, 18, 7, 1, 3, 5, 11, 18, 13, 98, 225, 1, 17, 18, 19, 100, 441, 242, 23, 18, 5, 13, 81, 98, 29, 40500, 31, 1, 1089, 17, 1225, 18, 37, 722, 1521, 100, 41, 1555848, 43, 10648, 10125, 1058, 47, 18, 343, 5, 2601, 13, 53, 26244, 3025, 5488, 3249, 29
Offset: 1

Views

Author

Jaroslav Krizek, Oct 14 2020

Keywords

Comments

a(n) is the product of arithmetic divisors d of n.
a(n) = pod(n) = A007955(n) for numbers n from A334420.

Examples

			a(6) = 18 because there are 3 arithmetic divisors of 6 (1, 3 and 6): sigma(1)/tau(1) =  1/1 = 1; sigma(3)/tau(3) = 4/2 = 2; sigma(6)/tau(6) = 12/4 = 3. Product of this divisors is 18.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A003601 (arithmetic numbers).
See A338170 and A338171 for number and sum of such divisors.

Programs

  • Magma
    [&*[d: d in Divisors(n) | IsIntegral(&+Divisors(d) / #Divisors(d))]: n in [1..100]];
    
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n],  Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if (sigma(d[k]) % numdiv(d[k]), 1, d[k])); \\ Michel Marcus, Oct 15 2020

Formula

a(p) = p for odd primes p (A065091).