A338172 a(n) is the product of those divisors d of n such that tau(d) divides sigma(d).
1, 1, 3, 1, 5, 18, 7, 1, 3, 5, 11, 18, 13, 98, 225, 1, 17, 18, 19, 100, 441, 242, 23, 18, 5, 13, 81, 98, 29, 40500, 31, 1, 1089, 17, 1225, 18, 37, 722, 1521, 100, 41, 1555848, 43, 10648, 10125, 1058, 47, 18, 343, 5, 2601, 13, 53, 26244, 3025, 5488, 3249, 29
Offset: 1
Keywords
Examples
a(6) = 18 because there are 3 arithmetic divisors of 6 (1, 3 and 6): sigma(1)/tau(1) = 1/1 = 1; sigma(3)/tau(3) = 4/2 = 2; sigma(6)/tau(6) = 12/4 = 3. Product of this divisors is 18.
Crossrefs
Programs
-
Magma
[&*[d: d in Divisors(n) | IsIntegral(&+Divisors(d) / #Divisors(d))]: n in [1..100]];
-
Mathematica
a[n_] := Times @@ Select[Divisors[n], Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &]; Array[a, 100] (* Amiram Eldar, Oct 15 2020 *)
-
PARI
a(n) = my(d=divisors(n)); prod(k=1, #d, if (sigma(d[k]) % numdiv(d[k]), 1, d[k])); \\ Michel Marcus, Oct 15 2020
Formula
a(p) = p for odd primes p (A065091).
Comments