A338223 G.f.: (1 / theta_4(x) - 1)^2 / 4, where theta_4() is the Jacobi theta function.
1, 4, 12, 30, 68, 144, 289, 556, 1034, 1868, 3292, 5678, 9608, 15984, 26188, 42314, 67509, 106460, 166090, 256552, 392628, 595696, 896484, 1338894, 1985298, 2923840, 4278448, 6222518, 8997544, 12938368, 18507297, 26340040, 37307326, 52597320, 73825504, 103180702
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0, g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i)) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 2): seq(a(n), n=2..37); # Alois P. Heinz, Feb 10 2021
-
Mathematica
nmax = 37; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^2/4, {x, 0, nmax}], x] // Drop[#, 2] & nmax = 37; CoefficientList[Series[(1/4) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^2, {x, 0, nmax}], x] // Drop[#, 2] & A015128[n_] := Sum[PartitionsP[k] PartitionsQ[n - k], {k, 0, n}]; a[n_] := (1/4) Sum[A015128[k] A015128[n - k], {k, 1, n - 1}]; Table[a[n], {n, 2, 37}]