cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338230 Number of ternary strings of length n that contain at least two 0's and at most one 1.

Original entry on oeis.org

0, 0, 1, 7, 27, 81, 213, 519, 1207, 2725, 6033, 13179, 28515, 61257, 130861, 278287, 589551, 1244877, 2621097, 5504643, 11533915, 24116785, 50331141, 104857047, 218103207, 452984181, 939523393, 1946156299, 4026531027, 8321498265, 17179868253, 35433479199, 73014442975, 150323854237
Offset: 0

Views

Author

Enrique Navarrete, Jan 30 2021

Keywords

Examples

			a(4) = 27 since the strings consist of 0000, the 4 permutations of 0001, the 4 permutations of 0002, the 6 permutations of 0022, and the 12 permutations of 0012. The total number of strings is then 1 + 4 + 4 + 6 + 12 = 27.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[x](Exp[x]-1-x)(1+x),{x,0,32}],x]Table[i!,{i,0,32}] (* Stefano Spezia, Jan 31 2021 *)

Formula

a(n) = 2^n + n*2^(n-1) - 2*binomial(n,2) - 2*n - 1.
E.g.f.: exp(x)*(exp(x) - 1 - x)*(1 + x).
G.f.: x^2*(1 - 3*x^2)/((1 - 2*x)^2*(1 - x)^3). - Stefano Spezia, Jan 31 2021