cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338291 Matrix inverse of the rascal triangle (A077028), read across rows.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 3, -3, 1, 2, -6, 7, -4, 1, -6, 18, -21, 13, -5, 1, 24, -72, 84, -52, 21, -6, 1, -120, 360, -420, 260, -105, 31, -7, 1, 720, -2160, 2520, -1560, 630, -186, 43, -8, 1, -5040, 15120, -17640, 10920, -4410, 1302, -301, 57, -9, 1
Offset: 0

Views

Author

Werner Schulte, Oct 20 2020

Keywords

Comments

The columns of this triangle are related to factorial numbers (A000142).
There is a family of triangles T(m;n,k) = 1 + m*k*(n-k) for some fixed integer m (for m >= 0 see A296180, Comments) and 0 <= k <= n. They satisfy the equation T(-m;n,k) = 2 - T(m;n,k). The corresponding matrices inverse M = T^(-1) are given by: M(m;n,n) = 1 for n >= 0, and M(m;n,n-1) = m*(1-n) - 1 for n > 0, and M(m;n,k) = (-1)^(n-k) * m * (m * k*(k+1) + 1) * Product_{i=k+1..n-2} (m*(i+1) - 1) for 0 <= k <= n-2. For special cases of the M(m;n,k) see A338817 (m=-1), and A167374 (m=0), and this triangle (m=1).

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :      0      1       2      3      4     5     6   7   8  9
================================================================
  0 :      1
  1 :     -1      1
  2 :      1     -2       1
  3 :     -1      3      -3      1
  4 :      2     -6       7     -4      1
  5 :     -6     18     -21     13     -5     1
  6 :     24    -72      84    -52     21    -6     1
  7 :   -120    360    -420    260   -105    31    -7   1
  8 :    720  -2160    2520  -1560    630  -186    43  -8   1
  9 :  -5040  15120  -17640  10920  -4410  1302  -301  57  -9  1
etc.
		

Crossrefs

Programs

  • PARI
    for(n=0,10,for(k=0,n,if(k==n,print(" 1"),if(k==n-1,print1(-n,", "),print1((-1)^(n-k)*(k^2+k+1)*(n-2)!/k!,", ")))))
    
  • PARI
    1/matrix(10, 10, n, k, n--; k--; if (n>=k, k*(n-k) + 1)) \\ Michel Marcus, Nov 11 2020

Formula

T(n,n) = 1 for n >= 0, and T(n,n-1) = -n for n > 0, and T(n,n-2) = n^2 - 3*n + 3 for n > 1, and T(n,k) = (-1)^(n-k) * (k^2 + k + 1) * (n-2)! / k! for 0 <= k <= n-2.
T(n,k) = (2-n) * T(n-1,k) for 0 <= k < n-2.
T(n,k) = T(k+2,k) * (-1)^(n-k) * (n-2)! / k! for 0 <= k <= n-2.
Row sums are A000007(n) for n >= 0.