A338317 Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
Keywords
Examples
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12): 2 3 4 5 6 7 8 9 A B C 22 32 33 43 44 54 55 65 66 222 52 53 72 73 74 75 322 332 333 433 83 444 2222 522 532 92 543 3222 3322 443 552 22222 533 732 722 3333 3332 5322 5222 33222 32222 222222
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
Formula
The Heinz numbers of these partitions are given by A338316. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.