cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.

Original entry on oeis.org

0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0

Views

Author

Peter Kagey, Dec 06 2020

Keywords

Comments

The only regular polygons that can be drawn with vertices on the centered hexagonal grid are equilateral triangles and regular hexagons.

Examples

			There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles.
The nine hexagons are:
    * . *       . * .       * * .
   . . . .     * . . *     * . * .
  * . . . *   . . . . .   . * * . .
   . . . .     * . . *     . . . .
    * . *       . * .       . . .
      1           1           7
which are marked with the number of ways to draw the hexagons up to translation.
The 66 equilateral triangles are:
    * . .       * . .       * . .       * . *       * . .       . . .
   * * . .     . . * .     . . . .     . . . .     . . . .     * . . *
  . . . . .   . * . . .   . . . * .   . . * . .   . . . . *   . . . . .
   . . . .     . . . .     * . . .     . . . .     . . . .     . . . .
    . . .       . . .       . . .       . . .       * . .       . * .
     24          14          12          12           2           2
which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
		

Crossrefs

Cf. A000537 (regular hexagons), A008893 (equilateral triangles).
Cf. A338323 (cubic grid).

Programs

  • Mathematica
    a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* Amiram Eldar, Jun 20 2025 *)

Formula

a(n) = A000537(n) + A008893(n).
a(n) = (1/2)*(n+1)*n*(2*n+1)^2.
a(n) = 3*A180324(n).
Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5.
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A185096(n)/4 = A322677(n)/32. (End)

A338322 a(n) is the number of regular hexagons with all six vertices (x,y,z) in the set {1,2,...,n}^3.

Original entry on oeis.org

0, 0, 0, 4, 32, 116, 320, 728, 1472, 2796, 5056, 8584, 13792, 21136, 31168, 45464, 64704, 90036, 122784, 164472, 216864, 281584, 360416, 457400, 574304, 714644, 881312, 1077612, 1306720, 1575088, 1884928, 2245336, 2658592, 3130028, 3665376, 4277376, 4967424
Offset: 0

Views

Author

Peter Kagey, Oct 22 2020

Keywords

Examples

			The a(3) = 4 hexagons with integer coordinates in {1,2,3} have vertices:
  (1,1,2), (1,2,3), (2,1,1), (2,3,3), (3,2,1), (3,3,2);
  (1,1,2), (1,2,1), (2,1,3), (2,3,1), (3,2,3), (3,3,2);
  (1,2,1), (1,3,2), (2,1,1), (2,3,3), (3,1,2), (3,2,3); and
  (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
One of the a(5) = 116 hexagons has vertices:
  (2,2,1), (1,4,2), (2,5,4), (4,4,5), (5,2,4), (4,1,2).
		

Crossrefs

Cf. A102698 (equilateral triangles), A334881 (squares), A338323 (regular polygons).

Formula

a(n) >= 4*(n-2)^3 for n >= 2.

A338791 a(n) is the number of Platonic solids in three dimensions with all vertices (x,y,z) in the set {1,2,...,n}^3.

Original entry on oeis.org

0, 0, 3, 28, 116, 340, 847, 1832, 3570, 6440, 10889, 17518, 26966, 40002, 57601, 80868, 111186, 150032, 199147, 260456, 336080, 428290, 539709, 673130, 831436, 1018154, 1237155, 1492352, 1787780, 2129250, 2521323, 2969584, 3479302, 4056636, 4707661, 5438808
Offset: 0

Views

Author

Peter Kagey, Dec 05 2020

Keywords

Comments

Dodecahedra and icosahedra with integer coordinates cannot be formed in Euclidean space (of any dimension) because pentagons with integer coordinates cannot be formed in Euclidean space, and both polyhedra contain a subset of vertices that form a pentagon. Therefore, this sequence counts the regular tetrahedra, cubes, and octahedra in the bounded cubic lattice.

Crossrefs

Cf. A098928 (cubes), A103158 (tetrahedra), A178797 (octahedra), A338323 (regular polygons).

Formula

a(n) = A098928(n) + 2*A103158(n-1) + A178797(n-1) for n >= 2.
Showing 1-3 of 3 results.