A339483 Number of regular polygons that can be drawn with vertices on a centered hexagonal grid with side length n.
0, 9, 75, 294, 810, 1815, 3549, 6300, 10404, 16245, 24255, 34914, 48750, 66339, 88305, 115320, 148104, 187425, 234099, 288990, 353010, 427119, 512325, 609684, 720300, 845325, 985959, 1143450, 1319094, 1514235, 1730265, 1968624, 2230800, 2518329, 2832795
Offset: 0
Examples
There are a(2) = 75 regular polygons that can be drawn on the centered hexagonal grid with side length 2: A000537(2) = 9 regular hexagons and A008893(n) = 66 equilateral triangles. The nine hexagons are: * . * . * . * * . . . . . * . . * * . * . * . . . * . . . . . . * * . . . . . . * . . * . . . . * . * . * . . . . 1 1 7 which are marked with the number of ways to draw the hexagons up to translation. The 66 equilateral triangles are: * . . * . . * . . * . * * . . . . . * * . . . . * . . . . . . . . . . . . . * . . * . . . . . . * . . . . . . * . . . * . . . . . . * . . . . . . . . . . . . . * . . . . . . . . . . . . . . . . . . . . . . . . . . . * . . . * . 24 14 12 12 2 2 which are marked with the number of ways to draw the triangles up to translation and dihedral action of the hexagon.
Links
- Peter Kagey, Table of n, a(n) for n = 0..10000
- Burkard Polster, What does this prove? Some of the most gorgeous visual "shrink" proofs ever invented, Mathologer video (2020).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Mathematica
a[n_] := n*(n+1)*(2*n+1)^2/2; Array[a, 35, 0] (* Amiram Eldar, Jun 20 2025 *)
Formula
a(n) = (1/2)*(n+1)*n*(2*n+1)^2.
a(n) = 3*A180324(n).
Sum_{n>=1} 1/a(n) = 10 - Pi^2 (A348670). - Amiram Eldar, Jun 20 2025
From Elmo R. Oliveira, Aug 20 2025: (Start)
G.f.: -3*x*(x + 3)*(3*x + 1)/(x - 1)^5.
E.g.f.: exp(x)*x*(2 + x)*(9 + 24*x + 4*x^2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Comments