A338369 Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 17, 13, 1, 1, 15, 31, 34, 21, 1, 1, 21, 49, 64, 57, 31, 1, 1, 28, 71, 103, 109, 86, 43, 1, 1, 36, 97, 151, 177, 166, 121, 57, 1, 1, 45, 127, 208, 261, 271, 235, 162, 73, 1, 1, 55, 161, 274, 361, 401, 385, 316, 209, 91, 1, 1, 66, 199, 349, 477, 556, 571, 519, 409, 262, 111, 1
Offset: 0
Examples
The triangle T(n,k) for 0 <= k <= n starts: n \k : 0 1 2 3 4 5 6 7 8 9 10 11 12 ==================================================================== 0 : 1 1 : 1 1 2 : 1 3 1 3 : 1 6 7 1 4 : 1 10 17 13 1 5 : 1 15 31 34 21 1 6 : 1 21 49 64 57 31 1 7 : 1 28 71 103 109 86 43 1 8 : 1 36 97 151 177 166 121 57 1 9 : 1 45 127 208 261 271 235 162 73 1 10 : 1 55 161 274 361 401 385 316 209 91 1 11 : 1 66 199 349 477 556 571 519 409 262 111 1 12 : 1 78 241 433 609 736 793 771 673 514 321 133 1 etc.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2020 *)
-
PARI
for(n=0,12,for(k=0,n,print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2,", "));print(" "))
Formula
T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
T(n,0) = T(n,n) = 1 for n >= 0.
T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - Stefano Spezia, Nov 27 2020
Comments