cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338382 Numbers m such that the equation m = k*tau(k) has more than one solution, where tau(k) is the number of divisors of k.

Original entry on oeis.org

108, 192, 448, 1080, 1512, 1920, 2376, 2688, 2808, 3672, 4104, 4224, 4480, 4968, 4992, 6000, 6264, 6528, 6696, 7296, 7992, 8100, 8640, 8832, 8856, 9288, 9856, 10152, 11136, 11448, 11648, 11904, 12096, 12744, 12960, 13176, 14208, 14400, 14472, 15120, 15232, 15336
Offset: 1

Views

Author

Bernard Schott, Oct 23 2020

Keywords

Comments

The map k -> k*tau(k) = m is not injective (A038040), this sequence lists in increasing order the integers m that have several preimages.
There are primitive terms that generate an infinity of terms because of the multiplicativity of tau(k); for example, a(1) = 108 and with t such that gcd(t,6) = 1, every m = 108*(t*tau(t)) is another term; in particular, with p prime > 3, every m = 216*p is another term: 1080, 1512, 2376, ...

Examples

			a(1) = 108 because 18 * tau(18) = 27 * tau(27) = 108.
a(2) = 192 because 24 * tau(24) = 32 * tau(32) = 192.
a(3) = 448 because 56 * tau(56) = 64 * tau(64) = 448.
a(8) = 2688 is the smallest term with 3 preimages because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.

Crossrefs

Cf. A337873 (similar for k*sigma(k)).
Subsequence of A036438.

Programs

  • Mathematica
    solNum[n_] := DivisorSum[n, 1 &, # * DivisorSigma[0, #] == n &]; Select[Range[16000], solNum[#] > 1 &] (* Amiram Eldar, Oct 23 2020 *)
  • PARI
    isok(m) = {my(nb=0); fordiv(m, d, if (d*numdiv(d) == m, nb++; if (nb>1, return(1))); ); return (0); } \\ Michel Marcus, Oct 24 2020

Extensions

More terms from Amiram Eldar, Oct 23 2020

A338384 Integers that can be written m = k*tau(k) = q*tau(q) where (k, q) is a primitive solution of this equation and tau(k) is the number of divisors of k.

Original entry on oeis.org

108, 192, 448, 2688, 6000, 8640, 12960, 17496, 18750, 20412, 32400, 86400, 112640, 120960, 138240, 169344, 181440, 245760, 304128, 600000, 658560, 714420, 857304, 979776, 1350000, 1632960, 1778112, 2073600, 2361960, 3359232, 3500000, 4561920, 7112448
Offset: 1

Views

Author

Bernard Schott, Nov 03 2020

Keywords

Comments

As the multiplicativity of tau(k) ensures an infinity of solutions to the general equation m = k*tau(k) (see A338382), Richard K. Guy asked if, as for k*sigma(k) = q*sigma(q) (A337875, A337876), k*tau(k) = q*tau(q) has an infinity of primitive solutions, in the sense that (k', q') is not a solution for any k' = k/d, q' = q/d, d>1 (see reference Guy's book and 3rd example). The answer to this question seems not to be known today.

Examples

			-> For a(1): 18 * tau(18) = 27 * tau(27) = 108.
-> For a(2): 24 * tau(24) = 32 * tau(32) = 192.
-> Why 1080 = A338382(4) is not a term? 90 * tau(90) = 135 * tau(135) = 1080 but as 90/5 = 18 and 135/5 = 27, this solution that is generated by the first example is not primitive.
-> For a(4) : 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = A338382(8) = 2688.
1) for k=168 and q=192; with d=3, k/3=56 and q/3=64, with 56 * tau(56) = 64 * tau(64) = 448 = a(3), hence (168, 192) is not a primitive solution;
2) for k=168 and q=224; with d=7, k/7=24 and q/7=32, with 24 * tau(24) = 32 * tau(32) = 192 = a(2), hence (24, 32) is not a primitive solution; but
3) for k=192 and q=224, there is no common divisor d such that 192/d and 224/d can satisfy (192/d)*tau(192/d) = (224/d)*tau(224/d), so (192, 224) is a primitive solution linked to m = 2688 that is the term a(4).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.

Crossrefs

Subsequence of A338382.
Cf. A337875 (similar for k*sigma(k))

Programs

  • PARI
    is(n) = {my(l, d); l = List(); d = divisors(n); for(i = 1, #d, if(d[i]*numdiv(d[i]) == n, listput(l, d[i]); ) ); forvec(x = vector(2, i, [1, #l]), if(isprimitive(l[x[1]], l[x[2]], n), return(1) ) , 2 ); 0 }
    isprimitive(m, n, t) = { my(g = gcd(m, n), d = divisors(g)); for(i = 2, #d, if(m/d[i]*numdiv(m/d[i]) == t/d[i]/numdiv(d[i]) && n/d[i]*numdiv(n/d[i]) == t/d[i]/numdiv(d[i]), return(0) ) ); 1 } \\ David A. Corneth, Nov 06 2020

Extensions

More terms from David A. Corneth, Nov 04 2020

A338385 Table read by rows, in which the n-th row lists the primitive solutions (k, q), kA338384(n).

Original entry on oeis.org

18, 27, 24, 32, 56, 64, 192, 224, 400, 500, 360, 432, 540, 648, 972, 2187, 1875, 3125, 1458, 1701, 1296, 1350, 2160, 2400, 5120, 5632, 2880, 3024, 3840, 4608, 4032, 4704, 3780, 5184, 10240, 16384, 8448, 9216, 20000, 25000, 15680, 16464, 15876, 25515, 20412, 23814
Offset: 1

Views

Author

Bernard Schott, Nov 09 2020

Keywords

Comments

As the multiplicativity of tau(k) ensures an infinity of solutions to the general equation k*tau(k) = q*tau(q) (see A338382), Richard K. Guy asked if there is an infinity of primitive solutions. A solution (k, q) with m = k*tau(k) = q*tau(q) is primitive in the sense that (k', q') is not a solution for any k' = k/d, q' = q/d, m' = m/(d*tau(d)), d>1 with m' = k' * tau(k') = q' * tau(q').
Warning, Richard K. Guy asked if "there is an infinity of primitive solutions (for k*tau(k) = q*tau(q)), in the sense that (k', q') is not a solution for any k' = k/d, q' = q/d, d>1". It appears that this definition is not enough well defined, because some solutions as (4032, 4704), (20000, 25000), (20412, 23814),... that are primitive are not obtained in this case (see detailed example (20000, 25000) below). The mathematical explanation is that tau satisfies the relation tau(r*s) = tau(r) * tau(s) * (t/tau(t)) where t = gcd(r,s).

Examples

			The table begins:
    18,  27;
    24,  32;
    56,  64;
   192, 224;
   400, 500;
   360, 432;
   ...
1st row is (18, 27) because 18 * tau(18) = 27 * tau(27) = 108 = A338384(1).
4th row is (192, 224) because 192 * tau(192) = 224 * tau(24) = 2688 = A338384(4); Note that 168 * tau(168) = 192 * tau(192) = 224 * tau(24) = 2688 = A338382(8) but (168, 192) and (168, 224) are not primitive solutions (see detailed example in A338384).
5th row is (400, 500) because 400 * tau(400) = 500 * tau(500) = 6000.
20th row is (20000, 25000) although (20000/50, 25000/50) = (400, 500) and that (400, 500) is the 5th row. Explanation: A338384(20) = 600000 = 20000*tau(20000) = 25000*tau(25000) and this pair is primitive, because for d = 50, we get 600000/(50*tau(50)) = 2000 <>  (20000/50)*tau(20000/50) = (25000/50)*tau(25000/50) = 6000. To be exhaustive, the two other pairs linked with 600000: (15000, 20000) and (15000, 25000) are not primitive.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.

Crossrefs

Cf. A337876 (similar for k*sigma(k)).
Showing 1-3 of 3 results.