cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338399 Inverse boustrophedon transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, -1, 2, -7, 15, -78, 293, -1629, 8992, -58105, 404669, -3097456, 25617669, -228373197, 2180640110, -22212371403, 240392198791, -2754699284494, 33320193986081, -424246016043385, 5671750867032228, -79436475109286061, 1163129092965592997
Offset: 0

Views

Author

Pontus von Brömssen, Oct 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; Round[CoefficientList[Series[2*E^(x/2)*Sinh[Sqrt[5]*x/2]*Cos[x] / (Sqrt[5]*(1 + Sin[x])), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 09 2024 *)
  • Python
    import sympy
    def A338399(n):
      T=[]
      for k in range(n+1):
        T.append(sympy.fibonacci(k))
        T.reverse()
        for i in range(k):
          T[i+1]=T[i]-T[i+1]
      return T[-1]
    
  • Python
    from itertools import accumulate, islice
    from operator import sub
    def A338399_gen(): # generator of terms
        blist, a, b = tuple(), 0, 1
        while True:
            yield (blist := tuple(accumulate(reversed(blist),func=sub,initial=a)))[-1]
            a, b = b, a+b
    A338399_list = list(islice(A338399_gen(),20)) # Chai Wah Wu, Jun 10 2022

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A000111(n-k) * A000045(k).
E.g.f.: (2/sqrt(5)) * exp(x/2) * sinh((sqrt(5)/2)*x) * cos(x) / (1 + sin(x)). [corrected by Vaclav Kotesovec, May 09 2024]
a(n) ~ (-1)^(n+1) * sinh(sqrt(5)*Pi/4) * 2^(n + 7/2) * n^(n + 1/2) / (sqrt(5) * Pi^(n + 1/2) * exp(n + Pi/4)). - Vaclav Kotesovec, May 09 2024