cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A338401 a(n) is the numerator of the resistance R(n) = a(n)/A338402(n) of a triangular network of 3*n*(n+1)/2 one Ohm resistors in a hexagonal lattice arrangement.

Original entry on oeis.org

2, 10, 10, 206, 3326, 43118, 150806, 11591578, 436494606, 1008712015454, 382034633808890, 13187511533010430, 2111825680430510462, 171204772756285452656378, 89579048665281690355286, 1013412795315891086553473628734, 20023655015717377508089133638478, 24678955315461926144059519221489609194
Offset: 1

Views

Author

Hugo Pfoertner, Oct 24 2020

Keywords

Comments

The resistance is measured between two corners of the triangular region.

Examples

			R(1) = a(1)/A338402(1) = 2/3,
R(2) = a(2)/A338402(2) = 10/9,
R(4) = a(4)/A338402(4) = 206/123.
a(3) = 10: The following network of A045943(3) = 18 one Ohm resistors has a resistance of R(3) = 10/7 Ohm, i.e., the current I driven by the voltage of 1 Volt is 7/10 = A338402(3)/a(3) Ampere.
.
                       O
                    __/ \_
                   / /   \ \
                  /1/     \1\
                 /_/       \_\
                 /   _____   \
                O---|__1__|---O
             __/ \_        __/ \_
            / /   \ \     / /   \ \
           /1/     \1\   /1/     \1\
          /_/       \_\ /_/       \_\
          /   _____   \ /   _____   \
         O---|__1__|---O---|__1__|---O
      __/ \__       __/ \__       __/ \_
     / /   \ \     / /   \ \     / /   \ \
    /1/     \1\   /1/     \1\   /1/     \1\
   /_/       \_\ /_/       \_\ /_/       \_\
   /   _____   \ /   _____   \ /   _____   \
  O---|__1__|---O---|__1__|---O---|__1__|---O
  |                                         |
  |                 V = 1 Volt              |
  |                     |                   |
   -------------------| |-- I=1/R Ampere ---
                        |
.
With a numbering of the resistors as shown in the following diagram,
.
              O
             / \
           15  18
           /     \
          O--14---O
         / \     / \
        7   9  13  17
       /     \ /     \
      O-- 6---O--12---O
     / \     / \     / \
    2   3   5   8  11  16
   /     \ /     \ /     \
  O---1---O---4---O--10---O
  |______1 Volt__I=I19____|
.
the currents in Amperes through the 18 resistors, and the current I=I19 through the voltage source of 1 Volt, are [11/30, 1/3, 1/30, 4/15, 2/15, 1/6, 2/15, 2/15, 1/30, 11/30, 1/30, 1/6, 1/30, 1/15, 1/30, 1/3, 2/15, 1/30, 7/10].
		

Crossrefs

Programs

  • PARI
    a33840_1_2(n)={my(md=3*n*(n+1)/2+1,
    T1=matrix(n,n),T2=matrix(n,n),T3=matrix(n,n),
    M=matrix(md,md,i,j,0),U=vector(md),
    valid(i,j)=i>0&&i<=n&&j>0&&j<=n&&i>=j,k=0,neq=1);
    \\ List of edges
    for(i=1,n,for(j=1,i,T1[i,j]=k++;T2[i,j]=k++;T3[i,j]=k++));
    \\ In- and outflow of current at all nodes
    \\ lower left triangle with inflow of current from source of voltage
    M[1,1]=-1;M[1,2]=-1;M[1,md]=1;
    \\ loops over lower left corners of triangles
    for(i=2,n+1,for(j=1,i,
    \\ exclude node at top of triangle
    if(j
    				
Showing 1-1 of 1 results.