A338420 Numbers k having exactly one base b which is not a divisor of k+1, and k contains the digit b-1 in base b.
2, 4, 7, 8, 10, 13, 15, 19, 23, 25, 26, 29, 31, 36, 38, 40, 51, 53, 55, 59, 63, 71, 80, 82, 84, 86, 87, 99, 101, 107, 109, 119, 127, 128, 129, 137, 143, 151, 152, 155, 161, 167, 169, 209, 215, 227, 256, 259, 260, 261, 265, 266, 267, 269, 271
Offset: 1
Crossrefs
Cf. A337536.
Programs
-
Mathematica
baseCount[n_] := Count[Complement[Range[n + 1], Divisors[n + 1]], ?(MemberQ[ IntegerDigits[n, #], # - 1] &)]; Select[Range[1000], baseCount[#] == 1 &] (* _Amiram Eldar, Oct 25 2020 *)
-
PARI
isok(k) = sum(b=2, k+1, ((k+1) % b) && #select(x->(x==b-1), digits(k, b))) == 1; \\ Michel Marcus, Oct 30 2020
-
Python
def A338420(N): return list(filter(isA338420,range(1,N+1))) def isA338420(n): counter=0 if n==2 or n==4: return True if n%2==0: counter=1 for b in range(3,(n//2) +1): if (n+1)%b!=0: counter=main_base_check(int(n/b),b)+counter return counter==1 def main_base_check(m,b): while m!=0: if m%b == b-1: return 1 m = m//b return 0 print(A338420(int(input())))
Comments