A338421 Place four points evenly spaced on a circle, draw n evenly spaced rays from each of the points, a(n) is the number of regions thus created. See Comments for details.
1, 4, 21, 16, 57, 44, 93, 36, 149, 132, 217, 176, 301, 268, 385, 208, 489, 452, 605, 528, 737, 684, 869, 532, 1021, 964, 1185, 1072, 1365, 1292, 1545, 1112, 1745, 1668, 1957, 1808, 2185, 2092, 2413, 1844, 2661, 2564, 2921, 2736, 3197, 3084, 3473, 2696, 3769
Offset: 1
Keywords
Examples
For n=1 there are four rays that do not intersect, so a(1)=1.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..642
- Lars Blomberg, Illustration for n=3
- Lars Blomberg, Illustration for n=7
- Lars Blomberg, Illustration for n=8
- Lars Blomberg, Illustration for n=16
- Lars Blomberg, Illustration for n=22
- Lars Blomberg, Illustration for n=26
- Lars Blomberg, Illustration for n=27
- Lars Blomberg, Illustration for n=38
Programs
-
PARI
a(n)={if( n==1,1, n==2,4, n%4==2,(3*n^2 - 4*n + 4)/2, n%8==1,(3*n^2 + 7*n - 8)/2, n%8==3,(3*n^2 + 7*n - 6)/2, n%8==4,(3*n^2 - 8*n + 16)/2, n%8==5,(3*n^2 + 7*n + 4)/2, n%8==7,(3*n^2 + 7*n - 10)/2, n%48==0,(3*n^2 - 31*n - 32)/2, n%48==8||n%48==40,(3*n^2 - 31*n + 128)/2, n%48==16||n%48==32,(3*n^2 - 31*n + 144)/2, n%48==24,(3*n^2 - 31*n + 80)/2, -1);} vector(642, n, a(n))
Formula
Conjectured for 3 <= n <= 642.
Select the row in the table below for which r = n mod m. Then a(n)=(a*n^2 + b*n + c)/d.
+=================================+
| r | m | a | b | c | d |
+---------------------------------+
| 2 | 4 | 3 | -4 | 4 | 2 |
| 1 | 8 | 3 | 7 | -8 | 2 |
| 3 | 8 | 3 | 7 | -6 | 2 |
| 4 | 8 | 3 | -8 | 16 | 2 |
| 5 | 8 | 3 | 7 | 4 | 2 |
| 7 | 8 | 3 | 7 | -10 | 2 |
| 0 | 48 | 3 | -31 | -32 | 2 |
| 8, 40 | 48 | 3 | -31 | 128 | 2 |
| 16, 32 | 48 | 3 | -31 | 144 | 2 |
| 24 | 48 | 3 | -31 | 80 | 2 |
+=================================+
Comments