A338427 a(n) is the largest prime(n)-smooth primitive nondeficient number.
6, 20, 2205, 12705, 117234117, 42840834309, 2792098376579421, 674431969285588989475, 21526530767769616227341527825, 292210459765634328314801626540200511773, 292210459765634328314801626540200511773
Offset: 2
Keywords
Examples
Initial terms, showing factorization: n a(n) 2 6 = 2 * 3, 3 20 = 2^2 * 5, 4 2205 = 3^2 * 5 * 7^2, 5 12705 = 3 * 5 * 7 * 11^2, 6 117234117 = 3^2 * 7^2 * 11^2 * 13^3, 7 42840834309 = 3^4 * 7^2 * 13^3 * 17^3, ... The largest primitive nondeficient (and primitive abundant) number that has prime(12) = 37 as largest prime factor is 29504726357465429322218597476548828125, which is one digit shorter than the largest 31-smooth primitive nondeficient (and primitive abundant) number, 292210459765634328314801626540200511773. So a(12) = a(11).
Links
- Peter Munn, Table of n, a(n) for n = 2..18
- L. E. Dickson, Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors, Amer. J. Math., 35 (1913), 413-426.
- Peter Munn, PARI program
- Eric Weisstein's World of Mathematics, Smooth Number.
- Index entries for sequences related to sigma(n)
Comments