cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006039 Primitive nondeficient numbers.

Original entry on oeis.org

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 748, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030
Offset: 1

Views

Author

Keywords

Comments

A number n is nondeficient (A023196) iff it is abundant or perfect, that is iff A001065(n) is >= n. Since any multiple of a nondeficient number is itself nondeficient, we call a nondeficient number primitive iff all its proper divisors are deficient. - Jeppe Stig Nielsen, Nov 23 2003
Numbers whose proper multiples are all abundant, and whose proper divisors are all deficient. - Peter Munn, Sep 08 2020
As a set, shares with the sets of k-almost primes this property: no member divides another member and each positive integer not in the set is either a divisor of 1 or more members of the set or a multiple of 1 or more members of the set, but not both. See A337814 for proof etc. - Peter Munn, Apr 13 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001065 (aliquot function), A023196 (nondeficient), A005101 (abundant), A091191.
Subsequences: A000396 (perfect), A071395 (primitive abundant), A006038 (odd primitive abundant), A333967, A352739.
Positions of 1's in A341620 and in A337690.
Cf. A180332, A337479, A337688, A337689, A337691, A337814, A338133 (sorted by largest prime factor), A338427 (largest prime(n)-smooth), A341619 (characteristic function), A342669.

Programs

  • Mathematica
    k = 1; lst = {}; While[k < 4050, If[DivisorSigma[1, k] >= 2 k && Min@Mod[k, lst] > 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 09 2017 *)

Formula

Union of A000396 (perfect numbers) and A071395 (primitive abundant numbers). - M. F. Hasler, Jul 30 2016
Sum_{n>=1} 1/a(n) is in the interval (0.34842, 0.37937) (Lichtman, 2018). - Amiram Eldar, Jul 15 2020

A338133 Primitive nondeficient numbers sorted by largest prime factor then by increasing size. Irregular triangle T(n, k), n >= 2, k >= 1, read by rows, row n listing those with largest prime factor = prime(n).

Original entry on oeis.org

6, 20, 28, 70, 945, 1575, 2205, 88, 550, 3465, 5775, 7425, 8085, 12705, 104, 572, 650, 1430, 2002, 4095, 6435, 6825, 9555, 15015, 78975, 81081, 131625, 189189, 297297, 342225, 351351, 570375, 63126063, 99198099, 117234117, 272, 748, 1870, 2210, 5355, 8415, 8925, 11492
Offset: 2

Views

Author

David A. Corneth and Peter Munn, Oct 11 2020

Keywords

Comments

For definitions and further references/links, see A006039, the main entry for primitive nondeficient numbers.
Rows are finite: row n is a subset of the divisors of any of the products formed by multiplying 2^(A035100(n)-1) by a member of the first n finite sets described in the Dickson reference.
Column 1 includes the even perfect numbers.
The largest number in rows 2..n (therefore the largest that is prime(n)-smooth) is A338427(n). - Peter Munn, Sep 07 2021

Examples

			Row 1 is empty as there exists no primitive nondeficient number of the form prime(1)^k = 2^k.
Row 2 is (6) as 6 is the only primitive nondeficient number of the form prime(1)^k * prime(2)^m = 2^k * 3^m that is a multiple of prime(2) = 3.
Irregular triangle T(n, k) begins:
  n   prime(n)  row n
  2      3      6;
  3      5      20;
  4      7      28, 70, 945, 1575, 2205;
  5     11      88, 550, 3465, 5775, 7425, 8085, 12705;
  ...
See also the factorization of initial terms below:
      6 = 2 * 3,
     20 = 2^2 * 5,
     28 = 2^2 * 7,
     70 = 2 * 5 * 7,
    945 = 3^3 * 5 * 7,
   1575 = 3^2 * 5^2 * 7,
   2205 = 3^2 * 5 * 7^2,
     88 = 2^3 * 11,
    550 = 2 * 5^2 * 11,
   3465 = 3^2 * 5 * 7 * 11,
   5775 = 3 * 5^2 * 7 * 11,
   7425 = 3^3 * 5^2 * 11,
   8085 = 3 * 5 * 7^2 * 11,
  12705 = 3 * 5 * 7 * 11^2,
    104 = 2^3 * 13,
    572 = 2^2 * 11 * 13,
    650 = 2 * 5^2 * 13,
   1430 = 2 * 5 * 11 * 13,
   2002 = 2 * 7 * 11 * 13,
   4095 = 3^2 * 5 * 7 * 13,
  ...
		

Crossrefs

A000040, A006530 are used to define this sequence.
Permutation of A006039.
A047802\{12}, A308710 are subsequences.

Programs

  • PARI
    rownupto(n, u) = { my(res = List(), pr = primes(n), e = vector(n, i, logint(u, pr[i]))); vu = vector(n, i, [0, e[i]]); vu[n][1] = 1; forvec(x = vu, c = prod(i = 1, n, pr[i]^x[i]); if(c <= u && isprimitive(c), listput(res, c) ) ); Set(res) }
    isprimitive(n) = { my(f = factor(n), c); if(sigma(f) < 2*n, return(0)); for(i = 1, #f~, c = n / f[i,1]; if(sigma(c) >= c * 2, return(0) ) ); 1 }
    for(i = 2, 7, print(rownupto(i, 10^9)))

Formula

A006530(T(n, k)) = A000040(n).
T(n, 1) = A308710(n-1) [provided there is no least deficient number that is not a power of 2, as described in A000079].
For m >= 1, T(A059305(m), 1) = A000668(m) * 2^(A000043(m)-1) = A000668(m) * A061652(m).
Showing 1-2 of 2 results.