A338460 Decimal expansion of the largest real root of e^(x-1) = Gamma(x+1).
3, 6, 1, 4, 7, 9, 3, 7, 0, 3, 1, 9, 2, 5, 2, 5, 4, 4, 7, 3, 8, 6, 5, 3, 6, 6, 2, 5, 6, 0, 3, 4, 5, 4, 6, 3, 3, 5, 3, 1, 5, 1, 6, 5, 9, 6, 9, 4, 7, 5, 0, 2, 2, 6, 6, 1, 1, 1, 5, 9, 9, 9, 7, 7, 4, 6, 2, 5, 1, 8, 2, 9, 8, 6, 1, 3, 6, 1, 8, 5, 7, 5, 4, 3, 2, 8, 1, 8, 6, 2, 8, 2, 1, 5, 7, 1, 1, 5, 9, 6, 3, 3, 0, 8, 1
Offset: 1
Examples
3.61479370319252544738653662560345463353151659694750...
Programs
-
Maple
Digits:= 155: fsolve(exp(x-1)=GAMMA(x+1), x=3..4); # Alois P. Heinz, Feb 01 2021
-
Mathematica
RealDigits[x /. FindRoot[LogGamma[x + 1] - x + 1, {x, 3}, WorkingPrecision -> 110], 10, 105][[1]] (* Amiram Eldar, Feb 01 2021 *)
-
PARI
solve(x=3,4,lngamma(x+1)-x+1) \\ Hugo Pfoertner, Feb 01 2021
Formula
x| (log(x!))^n * (log(x!) + 1) = x * (x-1)^n, for n >= 0
Comments