A338469 Products of three odd prime numbers of odd index.
125, 275, 425, 575, 605, 775, 935, 1025, 1175, 1265, 1331, 1445, 1475, 1675, 1705, 1825, 1955, 2057, 2075, 2255, 2425, 2575, 2585, 2635, 2645, 2725, 2783, 3175, 3179, 3245, 3425, 3485, 3565, 3685, 3725, 3751, 3925, 3995, 4015, 4175, 4301, 4475, 4565, 4715
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 125: {3,3,3} 1825: {3,3,21} 3425: {3,3,33} 275: {3,3,5} 1955: {3,7,9} 3485: {3,7,13} 425: {3,3,7} 2057: {5,5,7} 3565: {3,9,11} 575: {3,3,9} 2075: {3,3,23} 3685: {3,5,19} 605: {3,5,5} 2255: {3,5,13} 3725: {3,3,35} 775: {3,3,11} 2425: {3,3,25} 3751: {5,5,11} 935: {3,5,7} 2575: {3,3,27} 3925: {3,3,37} 1025: {3,3,13} 2585: {3,5,15} 3995: {3,7,15} 1175: {3,3,15} 2635: {3,7,11} 4015: {3,5,21} 1265: {3,5,9} 2645: {3,9,9} 4175: {3,3,39} 1331: {5,5,5} 2725: {3,3,29} 4301: {5,7,9} 1445: {3,7,7} 2783: {5,5,9} 4475: {3,3,41} 1475: {3,3,17} 3175: {3,3,31} 4565: {3,5,23} 1675: {3,3,19} 3179: {5,7,7} 4715: {3,9,13} 1705: {3,5,11} 3245: {3,5,17} 4775: {3,3,43}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10000: # for terms <= N P0:= [seq(ithprime(i),i=3..numtheory:-pi(floor(N/25)),2)]: sort(select(`<=`,[seq(seq(seq(P0[i]*P0[j]*P0[k],k=1..j),j=1..i),i=1..nops(P0))], N)); # Robert Israel, Nov 12 2020
-
Mathematica
Select[Range[1,1000,2],PrimeOmega[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
-
PARI
isok(m) = my(f=factor(m)); (m%2) && (bigomega(f)==3) && (#select(x->!(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A338469(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1)+1 for a,k in filter(lambda x:x[0]&1,enumerate(primerange(5,integer_nthroot(x,3)[0]+1),3)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a)))) return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024
Comments