cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338475 Decimal expansion of the sum of reciprocals of the smallest primes > 2^k for k >= 0.

Original entry on oeis.org

1, 2, 4, 0, 4, 0, 7, 1, 4, 6, 6, 5, 5, 9, 6, 0, 6, 2, 8, 9, 4, 6, 4, 1, 8, 0, 2, 1, 4, 0, 5, 7, 2, 8, 3, 3, 9, 2, 3, 1, 3, 8, 1, 0, 7, 3, 4, 6, 9, 0, 9, 9, 2, 6, 9, 0, 3, 7, 1, 6, 4, 2, 6, 1, 5, 7, 4, 3, 0, 0, 2, 2, 7, 5, 6, 2, 1, 2, 7, 2, 3, 9, 6, 4, 4, 7, 4, 0, 1, 9
Offset: 1

Views

Author

Bernard Schott, Oct 29 2020

Keywords

Comments

If q(k) = A014210(k) is the smallest prime > 2^k, then 2^k < q(k), so Sum_{k>=0} 1/q(k) < Sum_{k>=0} 1/2^k = 2; hence, the sum of the reciprocals of these primes q(k) form a convergent series.

Examples

			1.2404071466559606289464180214057283392313810734691...
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 615 pp. 82 and 279, Ellipses, Paris, 2004. Warning : gives Sum_{k>=1} 1/A104080(k) = 0.7404...

Crossrefs

Programs

  • Maple
    evalf(sum(1/nextprime(2^k), k=0..infinity),90);
  • Mathematica
    ndigits = 90; RealDigits[Sum[1/NextPrime[2^k], {k, 0, ndigits/Log10[2] + 1}], 10, ndigits][[1]] (* Amiram Eldar, Oct 29 2020 *)
  • PARI
    suminf(k=0, 1/nextprime(2^k+1)) \\ Michel Marcus, Oct 29 2020

Formula

Equals Sum_{k>=0} 1/A014210(k).