cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014210 Next prime after 2^n.

Original entry on oeis.org

2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
Offset: 0

Views

Author

Keywords

Comments

Except for a(1) = 3 instead of 2, a(n) is the least prime obtained as a binomial transform of n numbers. E.g. a(5) = (1,5,10,10,5,1).(1,1,1,1,1,6)= 37. - Amarnath Murthy, Nov 26 2003
a(n) is the smallest m for which m>(tau(m))^n, where tau(m) is the number of divisors of m. [Vladimir Shevelev, May 31 2010]
Equivalently, "Smallest prime > 2^n" while in A104080 it is "Smallest prime >= 2^n". The only difference is the 2nd term with a(1) = 3 and A104080(1) = 2. - Bernard Schott, Oct 30 2020

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 615 pp. 82 and 279, Ellipses, Paris, 2004. Warning : gives Sum_{k>=1} 1/A104080(k) = 0.7404...

Crossrefs

See A203074 for another version.

Programs

  • Maple
    [ seq( nextprime( 2^i ),i=0..40) ];
  • Mathematica
    NextPrime[ n_Integer] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Table[ NextPrime[2^n], {n, 0, 35} ]
    f[n_] := NextPrime[2^n]; Array[f, 30, 0] (* Robert G. Wilson v, Jun 05 2015 *)
    NextPrime[2^Range[0,40]] (* Harvey P. Dale, Jun 22 2017 *)
  • PARI
    a(n) = nextprime(2^n+1); \\ Michel Marcus, Oct 30 2020

Formula

Sum_{k>=0} 1/a(k) = A338475. - Bernard Schott, Oct 30 2020

A104080 Smallest prime >= 2^n.

Original entry on oeis.org

2, 2, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
Offset: 0

Views

Author

Cino Hilliard, Mar 03 2005

Keywords

Crossrefs

Except initial terms and offset, same as A014210 and A203074.
The opposite (greatest prime <= 2^n) is A014234, indices A007053.
The distance from 2^n is A092131, opposite A013603.
Counting zeros instead of both bits gives A372474, cf. A035103, A211997.
Counting ones instead of both bits gives A372517, cf. A014499, A061712.
For squarefree instead of prime we have A372683, cf. A143658, A372540.
The indices of these prime are given by A372684.

Programs

Formula

a(n) = A014210(n), n <> 1. - R. J. Mathar, Oct 14 2008
Sum_{n >= 0} 1/a(n) = A338475 + 1/6 = 1.4070738... (because 1/6 = 1/2 - 1/3). - Bernard Schott, Nov 01 2020
From Gus Wiseman, Jun 03 2024: (Start)
a(n) = A007918(2^n).
a(n) = 2^n + A092131(n).
a(n) = prime(A372684(n)).
(End)
Showing 1-2 of 2 results.