A338483 a(n) is the smallest number having n smaller numbers with the same number of divisors.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213
Offset: 1
Keywords
Examples
The smallest number having two smaller numbers (2 and 3) with the same number of divisors is 5, so a(2) is 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 500: # for terms before the first term > N T:= map(numtheory:-tau, [$1..N]): M:= max(T): V:= Vector(M): for n from 1 to N do v:= T[n]; V[v]:= V[v]+1; if not assigned(R[V[v]]) then R[V[v]]:= n fi od: for nn from 1 while assigned(R[nn]) do od: seq(R[i],i=2..nn-1); # Robert Israel, Oct 30 2020
-
Mathematica
f[n_]:=With[{tau=DivisorSigma[0,n]},Length[Select[Range[n-1],DivisorSigma[0,#]==tau&]]];t=Table[f[n],{n,1,300}]; a[n_]:=FirstPosition[t,n]; Rest[a/@Range[0,65]]//Flatten (* f(n) by Jean-François Alcover at A047983 *)
-
PARI
f(n) = {my(d=numdiv(n)); sum(k=1, n-1, (numdiv(k)==d))} \\ A047983 a(n) = my(k=1); while (f(k)!= n, k++); k; \\ Michel Marcus, Oct 30 2020
Formula
A047983(a(n)) = n. - Rémy Sigrist, Dec 06 2020
Comments