cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338384 Integers that can be written m = k*tau(k) = q*tau(q) where (k, q) is a primitive solution of this equation and tau(k) is the number of divisors of k.

Original entry on oeis.org

108, 192, 448, 2688, 6000, 8640, 12960, 17496, 18750, 20412, 32400, 86400, 112640, 120960, 138240, 169344, 181440, 245760, 304128, 600000, 658560, 714420, 857304, 979776, 1350000, 1632960, 1778112, 2073600, 2361960, 3359232, 3500000, 4561920, 7112448
Offset: 1

Views

Author

Bernard Schott, Nov 03 2020

Keywords

Comments

As the multiplicativity of tau(k) ensures an infinity of solutions to the general equation m = k*tau(k) (see A338382), Richard K. Guy asked if, as for k*sigma(k) = q*sigma(q) (A337875, A337876), k*tau(k) = q*tau(q) has an infinity of primitive solutions, in the sense that (k', q') is not a solution for any k' = k/d, q' = q/d, d>1 (see reference Guy's book and 3rd example). The answer to this question seems not to be known today.

Examples

			-> For a(1): 18 * tau(18) = 27 * tau(27) = 108.
-> For a(2): 24 * tau(24) = 32 * tau(32) = 192.
-> Why 1080 = A338382(4) is not a term? 90 * tau(90) = 135 * tau(135) = 1080 but as 90/5 = 18 and 135/5 = 27, this solution that is generated by the first example is not primitive.
-> For a(4) : 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = A338382(8) = 2688.
1) for k=168 and q=192; with d=3, k/3=56 and q/3=64, with 56 * tau(56) = 64 * tau(64) = 448 = a(3), hence (168, 192) is not a primitive solution;
2) for k=168 and q=224; with d=7, k/7=24 and q/7=32, with 24 * tau(24) = 32 * tau(32) = 192 = a(2), hence (24, 32) is not a primitive solution; but
3) for k=192 and q=224, there is no common divisor d such that 192/d and 224/d can satisfy (192/d)*tau(192/d) = (224/d)*tau(224/d), so (192, 224) is a primitive solution linked to m = 2688 that is the term a(4).
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.

Crossrefs

Subsequence of A338382.
Cf. A337875 (similar for k*sigma(k))

Programs

  • PARI
    is(n) = {my(l, d); l = List(); d = divisors(n); for(i = 1, #d, if(d[i]*numdiv(d[i]) == n, listput(l, d[i]); ) ); forvec(x = vector(2, i, [1, #l]), if(isprimitive(l[x[1]], l[x[2]], n), return(1) ) , 2 ); 0 }
    isprimitive(m, n, t) = { my(g = gcd(m, n), d = divisors(g)); for(i = 2, #d, if(m/d[i]*numdiv(m/d[i]) == t/d[i]/numdiv(d[i]) && n/d[i]*numdiv(n/d[i]) == t/d[i]/numdiv(d[i]), return(0) ) ); 1 } \\ David A. Corneth, Nov 06 2020

Extensions

More terms from David A. Corneth, Nov 04 2020

A338520 Integers that can be expressed as a product d*sigma(d), where sigma is the sum of divisors function, in a single way.

Original entry on oeis.org

1, 6, 12, 28, 30, 56, 72, 117, 120, 132, 180, 182, 306, 360, 380, 496, 552, 672, 702, 775, 792, 840, 870, 992, 1080, 1092, 1406, 1440, 1568, 1584, 1680, 1722, 1836, 1892, 2016, 2160, 2184, 2256, 2280, 2793, 2862, 3276, 3312, 3510, 3540, 3600, 3672, 3696, 3782, 3960
Offset: 1

Views

Author

Michel Marcus, Nov 01 2020

Keywords

Comments

Integers m such that A327153(m) = 1.

Crossrefs

Subsequence of A327165.
Subsequences: A000396 (perfect numbers), A036690 (p*(p+1)).
Cf. A338519 (similar for number of divisors).

Programs

  • PARI
    f(n) = sumdiv(n, d, d*sigma(d)==n); \\ A327153
    isok(n) = f(n)==1;
Showing 1-2 of 2 results.