A338526 Triangle read by rows: T(n,k) is the number of permutations of k elements from [1..n] without consecutive adjacent values.
1, 1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 4, 2, 1, 5, 12, 18, 20, 14, 1, 6, 20, 48, 90, 124, 90, 1, 7, 30, 100, 272, 582, 860, 646, 1, 8, 42, 180, 650, 1928, 4386, 6748, 5242, 1, 9, 56, 294, 1332, 5110, 15912, 37566, 59612, 47622, 1, 10, 72, 448, 2450, 11604, 46250, 148648, 360642, 586540, 479306
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 1 2 0 3 1 3 2 0 4 1 4 6 4 2 5 1 5 12 18 20 14 6 1 6 20 48 90 124 90 7 1 7 30 100 272 582 860 646 8 1 8 42 180 650 1928 4386 6748 5242
Programs
-
PARI
isok(s, p) = {for (i=1, #s-1, if (abs(s[p[i+1]] - s[p[i]]) == 1, return (0));); return (1);} T(n, k) = {my(nb = 0); forsubset([n, k], s, for(i=1, k!, if (isok(s, numtoperm(k, i)), nb++););); nb;} \\ Michel Marcus, Nov 17 2020
Formula
T(n,k) = (n! + Sum_{p=1..k-1} (-1)^p (n-p)! Sum_{r=1..p} 2^r binomial(k-p,r) binomial(p-1,r-1) )/(n-k)!. - Ron L.J. van den Burg, Aug 04 2024
O.g.f.: Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k = Sum_{i>=0} i!(x*y*(1-x*y)/(1+x*y))^i/(1-x)^(i+1). - Ron L.J. van den Burg, Aug 14 2024
Comments