A338532 Number of spanning trees in the n X 3 king graph.
1, 192, 17745, 1612127, 146356224, 13286470095, 1206167003329, 109497763028928, 9940381426772625, 902403667119137183, 81921642989758089216, 7436977302591050167695, 675140651246077550931841, 61290344237862763973468352, 5564035123440571957929508305, 505111975464406109413779799007
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_nXk_king_graph(n, k): grids = [] for i in range(1, k + 1): for j in range(1, n): grids.append((i + (j - 1) * k, i + j * k)) if i < k: grids.append((i + (j - 1) * k, i + j * k + 1)) if i > 1: grids.append((i + (j - 1) * k, i + j * k - 1)) for i in range(1, k * n, k): for j in range(1, k): grids.append((i + j - 1, i + j)) return grids def A338029(n, k): if n == 1 or k == 1: return 1 universe = make_nXk_king_graph(n, k) GraphSet.set_universe(universe) spanning_trees = GraphSet.trees(is_spanning=True) return spanning_trees.len() def A338532(n): return A338029(n, 3) print([A338532(n) for n in range(1, 20)])
Formula
Empirical g.f.: x*(-15*x^3 - 111*x^2 + 97*x + 1) / (x^4 - 95*x^3 + 384*x^2 - 95*x + 1). - Vaclav Kotesovec, Dec 04 2020