cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338532 Number of spanning trees in the n X 3 king graph.

Original entry on oeis.org

1, 192, 17745, 1612127, 146356224, 13286470095, 1206167003329, 109497763028928, 9940381426772625, 902403667119137183, 81921642989758089216, 7436977302591050167695, 675140651246077550931841, 61290344237862763973468352, 5564035123440571957929508305, 505111975464406109413779799007
Offset: 1

Views

Author

Seiichi Manyama, Nov 29 2020

Keywords

Crossrefs

Column 3 of A338029.
Cf. A006238.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_nXk_king_graph(n, k):
        grids = []
        for i in range(1, k + 1):
            for j in range(1, n):
                grids.append((i + (j - 1) * k, i + j * k))
                if i < k:
                    grids.append((i + (j - 1) * k, i + j * k + 1))
                if i > 1:
                    grids.append((i + (j - 1) * k, i + j * k - 1))
        for i in range(1, k * n, k):
            for j in range(1, k):
                grids.append((i + j - 1, i + j))
        return grids
    def A338029(n, k):
        if n == 1 or k == 1: return 1
        universe = make_nXk_king_graph(n, k)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    def A338532(n):
        return A338029(n, 3)
    print([A338532(n) for n in range(1, 20)])

Formula

Empirical g.f.: x*(-15*x^3 - 111*x^2 + 97*x + 1) / (x^4 - 95*x^3 + 384*x^2 - 95*x + 1). - Vaclav Kotesovec, Dec 04 2020