A338544 a(n) = (5*floor((n-1)/2)^2 + (4+(-1)^n)*floor((n-1)/2)) / 2.
0, 0, 0, 4, 5, 13, 15, 27, 30, 46, 50, 70, 75, 99, 105, 133, 140, 172, 180, 216, 225, 265, 275, 319, 330, 378, 390, 442, 455, 511, 525, 585, 600, 664, 680, 748, 765, 837, 855, 931, 950, 1030, 1050, 1134, 1155, 1243, 1265, 1357, 1380, 1476, 1500, 1600, 1625, 1729, 1755, 1863
Offset: 0
Links
- Wikipedia, Integer triangle
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
Table[(5 Floor[(n - 1)/2]^2 + Floor[(n - 1)/2] (4 + (-1)^n))/2, {n, 0, 100}]
Formula
From Stefano Spezia, Nov 01 2020: (Start)
G.f.: x^3*(4 + x)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. (End)
16*a(n) = -14*n-1+10*n^2+(-1)^n-6*(-1)^n*n . - R. J. Mathar, Aug 19 2022
Comments