A338556 Products of three prime numbers of even index.
27, 63, 117, 147, 171, 261, 273, 333, 343, 387, 399, 477, 507, 549, 609, 637, 639, 711, 741, 777, 801, 903, 909, 931, 963, 1017, 1083, 1113, 1131, 1179, 1183, 1251, 1281, 1359, 1421, 1443, 1467, 1491, 1557, 1629, 1653, 1659, 1677, 1729, 1737, 1791, 1813, 1869
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 27: {2,2,2} 637: {4,4,6} 1183: {4,6,6} 63: {2,2,4} 639: {2,2,20} 1251: {2,2,34} 117: {2,2,6} 711: {2,2,22} 1281: {2,4,18} 147: {2,4,4} 741: {2,6,8} 1359: {2,2,36} 171: {2,2,8} 777: {2,4,12} 1421: {4,4,10} 261: {2,2,10} 801: {2,2,24} 1443: {2,6,12} 273: {2,4,6} 903: {2,4,14} 1467: {2,2,38} 333: {2,2,12} 909: {2,2,26} 1491: {2,4,20} 343: {4,4,4} 931: {4,4,8} 1557: {2,2,40} 387: {2,2,14} 963: {2,2,28} 1629: {2,2,42} 399: {2,4,8} 1017: {2,2,30} 1653: {2,8,10} 477: {2,2,16} 1083: {2,8,8} 1659: {2,4,22} 507: {2,6,6} 1113: {2,4,16} 1677: {2,6,14} 549: {2,2,18} 1131: {2,6,10} 1729: {4,6,8} 609: {2,4,10} 1179: {2,2,32} 1737: {2,2,44}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
-
PARI
isok(m) = my(f=factor(m)); (bigomega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ Michel Marcus, Nov 10 2020
-
Python
from itertools import filterfalse from math import isqrt from sympy import primepi, primerange, integer_nthroot def A338556(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1)+1 for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(k,isqrt(x//k)+1),a)))) return bisection(f,n,n) # Chai Wah Wu, Oct 18 2024
Comments