cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338563 a(n) = lcm(n, tau(n), sigma(n)) where tau(k) is the number of divisors of k (A000005) and sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 6, 12, 84, 30, 12, 56, 120, 117, 180, 132, 84, 182, 168, 120, 2480, 306, 234, 380, 420, 672, 396, 552, 120, 2325, 1092, 1080, 168, 870, 360, 992, 2016, 528, 1836, 1680, 3276, 1406, 1140, 2184, 360, 1722, 672, 1892, 924, 1170, 1656, 2256, 7440, 2793, 4650
Offset: 1

Views

Author

Jaroslav Krizek, Nov 02 2020

Keywords

Examples

			a(6) = lcm(6, tau(6), sigma(6)) = lcm(6, 4, 12) = 12.
		

Crossrefs

Cf. A337323 (gcd(n, tau(n), sigma(n))), A324528 (lcm(n, tau(n), pod(n))), A324529 (lcm(n, sigma(n), pod(n))).

Programs

  • Magma
    [LCM([n, #Divisors(n), &+Divisors(n)]): n in [1..100]]
    
  • Mathematica
    a[n_] := LCM @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 50] (* Amiram Eldar, Nov 03 2020 *)
  • PARI
    a(n) = my(f=factor(n)); lcm([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Nov 03 2020

Formula

a(p) = p *(p + 1) for p = primes (A000040).