cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338571 Number of polyhedra formed when the five Platonic solids, in the order tetrahedron, octahedron, cube, icosahedron, dodecahedron, are internally cut by all the planes defined by any three of their vertices.

Original entry on oeis.org

1, 8, 96, 2520, 552600
Offset: 1

Views

Author

Scott R. Shannon, Nov 03 2020

Keywords

Comments

For a Platonic solid create all possible planes defined by connecting any three of its vertices. For example, in the case of a cube this results in fourteen planes; six planes between the pairs of parallel edges connected to each end of the face diagonals, and eight planes from connecting the three vertices adjacent to each corner vertex. Use all the resulting planes to cut the solid into individual smaller polyhedra. The sequence lists the numbers of resulting polyhedra for the Platonic solids, ordered by number of vertices: tetrahedron, octahedron, cube, icosahedron, dodecahedron.
See A338622 for the number and images of the k-faced polyhedra in each dissection for each of the five solids.
The author thanks Zach J. Shannon for producing the images for this sequence.

Examples

			a(1) = 1. The tetrahedron has no internal cutting planes so the single polyhedron after cutting is the tetrahedron itself.
a(2) = 8. The octahedron has 3 internal cutting planes resulting in 8 polyhedra.
a(3) = 96. The cube has 14 internal cutting planes resulting in 96 polyhedra. See also A333539.
a(4) = 2520. The icosahedron has 47 cutting planes resulting in 2520 polyhedra.
See A338622 for a breakdown of the above totals into the corresponding number of k-faced polyhedra.
a(5) = 552600. The dodecahedron has 307 internal cutting planes resulting in 552600 polyhedra. It is the only Platonic solid which produces polyhedra with 6 or more faces.
		

Crossrefs

Cf. A338622 (number of k-faced polyhedra in each dissection), A333539 (n-dimensional cube), A053016, A063722, A063723, A098427.