cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A338622 Irregular table read by rows: The number of k-faced polyhedra, where k>=4, formed when the five Platonic solids, in the order tetrahedron, octahedron, cube, icosahedron, dodecahedron, are internally cut by all the planes defined by any three of their vertices.

Original entry on oeis.org

1, 8, 72, 24, 2160, 360, 205320, 208680, 94800, 34200, 7920, 1560, 120
Offset: 1

Views

Author

Scott R. Shannon, Nov 04 2020

Keywords

Comments

See A338571 for further details and images of this sequence.
The author thanks Zach J. Shannon for producing the images for this sequence.

Examples

			The cube is cut with 14 internal planes defined by all 3-vertex combinations of its 8 vertices. This leads to the creation of 72 4-faced polyhedra and 24 5-faced polyhedra, 96 pieces in all. See A338571 and A333539.
The table is:
1;
8;
72, 24;
2160, 360;
205320, 208680, 94800, 34200, 7920, 1560, 120;
		

Crossrefs

Cf. A338571 (total number of polyhedra), A333539 (n-dimensional cube), A053016, A063722, A063723, A098427, A333543.

Formula

Sum of row n = A338571(n).

A333539 Number of pieces formed when an n-dimensional cube is cut by all the hyperplanes defined by any n of the 2^n vertices.

Original entry on oeis.org

1, 4, 96, 570048
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2020, in response to a question raised by Scott R. Shannon

Keywords

Examples

			The two diagonals of a square cut it into four pieces, so a(2) = 4.
For the cube the answer is 96 regions.  There are 14 cuts through the cube: six cut the cube in half along a face diagonal, and eight cut off a corner with a triangle through the three adjacent corners. The cuts through the center alone divide the cube into 24 regions, and then the corner cuts further divide each of these into four regions. - _Tomas Rokicki_, Apr 11 2020
		

References

Crossrefs

For the number of hyperplanes see A007847.
Cf. A333540, A338571 (number of pieces for the 3D Platonic solids).
For a more detailed count, see A333543 and A333544.

A338783 Number of polyhedra formed when an n-prism, formed from two n-sided regular polygons joined by n adjacent rectangles, is internally cut by all the planes defined by any three of its vertices.

Original entry on oeis.org

18, 96, 1335, 4524, 29871, 65344, 319864, 594560
Offset: 3

Views

Author

Scott R. Shannon, Nov 08 2020

Keywords

Comments

For an n-prism, formed from two n-sided regular polygons joined by n adjacent rectangles, create all possible internal planes defined by connecting any three of its vertices. For example, in the case of a triangular prism this results in 6 planes. Use all the resulting planes to cut the prism into individual smaller polyhedra. The sequence lists the number of resulting polyhedra for prisms with n>=3.
See A338801 for the number and images of the k-faced polyhedra in each prism dissection.
The author thanks Zach J. Shannon for assistance in producing the images for this sequence.

Examples

			a(3) = 18. The triangular 3-prism has 6 internal cutting planes resulting in 18 polyhedra; seventeen 4-faced polyhedra and one 6-faced polyhedron.
a(4) = 96. The square 4-prism (a cuboid) has 14 internal cutting planes resulting in 96 polyhedra; seventy-two 4-faced polyhedra and twenty-four 5-faced polyhedra. See A338622.
		

Crossrefs

Cf. A338801 (number of k-faced polyhedra), A338806 (antiprism), A338571 (Platonic solids), A338622 (k-faced polyhedra in Platonic solids), A333539 (n-dimensional cube).

A338806 Number of polyhedra formed when an n-antiprism, formed from two n-sided regular polygons joined by 2n adjacent alternating triangles, is internally cut by all the planes defined by any three of its vertices.

Original entry on oeis.org

8, 195, 834, 6365, 22770, 81769, 271702, 688793
Offset: 3

Views

Author

Scott R. Shannon, Nov 10 2020

Keywords

Comments

For an n-antiprism, formed from two n-sided regular polygons joined by 2n adjacent alternating triangles, create all possible internal planes defined by connecting any three of its vertices. For example, in the case of a triangular 3-antiprism this results in 3 planes. Use all the resulting planes to cut the prism into individual smaller polyhedra. The sequence lists the number of resulting polyhedra for antiprisms with n>=3.
See A338808 for the number and images of the k-faced polyhedra in each antiprism dissection.
The author thanks Zach J. Shannon for assistance in producing the images for this sequence.

Examples

			a(3) = 8. The 3-antiprism is cut with 3 internal planes resulting in 8 polyhedra, all 8 pieces having 4 faces.
a(4) = 195. The 4-antiprism is cut with 16 internal planes resulting in 195 polyhedra; 128 with 4 faces, 56 with 5 faces, 8 with 6 faces, and 3 with 8 faces. Note the number of 8-faced polyhedra is not a multiple of 4 - they lie directly along the z-axis so are not symmetric with respect to the number of edges forming the regular n-gons.
		

Crossrefs

Cf. A338808 (number of k-faced polyhedra), A338783 (regular prism), A338571 (Platonic solids), A333539 (n-dimensional cube).

A338809 Number of polyhedra formed when an n-bipyramid, formed from two n-gonal pyraminds joined at the base, is internally cut by all the planes defined by any three of its vertices.

Original entry on oeis.org

12, 8, 120, 108, 756, 704, 3384, 3340, 11880, 10032, 33800, 32312, 82440, 78656, 182172, 144540, 365712, 350600
Offset: 3

Views

Author

Scott R. Shannon, Nov 10 2020

Keywords

Comments

For a n-bipyramid, formed from two n-gonal pyraminds joined at the base, create all possible internal planes defined by connecting any three of its vertices. For example, in the case of a 3-bipyramid this results in 4 planes. Use all the resulting planes to cut the n-bipyramid into individual smaller polyhedra. The sequence lists the number of resulting polyhedra for bipyramids with n>=3.
See A338825 for the number and images of the k-faced polyhedra in each bipyramid dissection.
The author thanks Zach J. Shannon for assistance in producing the images for this sequence.

Examples

			a(3) = 12. The 3-bipyramid is cut with 4 internal planes resulting in 12 polyhedra, all 12 pieces having 4 faces.
a(5) = 120. The 5-bipyramid is cut with 16 internal planes resulting in 120 polyhedra, all 120 pieces having 4 faces.
a(7) = 756. The 7-bipyramid is cut with 36 internal planes resulting in 756 polyhedra; 448 with 4 faces, 280 with 5 faces, and 28 with 6 faces.
Note that for a single n-pyramid the number of polyhedra is the same as the number of regions in the dissection of a 2D n-polygon, see A007678, as all planes join two points on the polygon and the single apex, resulting in an equivalent number of regions.
		

Crossrefs

Cf. A338825 (number of k-faced polyhedra), A338571 (Platonic solids), A333539 (n-dimensional cube), A007678 (2D n-polygon).

A347753 Number of polyhedra formed when a row of n adjacent cubes are internally cut by all the planes defined by any three of their vertices.

Original entry on oeis.org

96, 2968, 42384, 319416
Offset: 1

Views

Author

Scott R. Shannon, Sep 12 2021

Keywords

Comments

For a row of n adjacent cubes create all possible planes defined by connecting any three of their vertices. For example, in the case of a single cube this results in fourteen planes; six planes between the pairs of parallel edges connected to each end of the face diagonals, and eight planes from connecting the three vertices adjacent to each corner vertex. Use all the resulting planes to cut the entire solid into individual smaller polyhedra. The sequence lists the numbers of resulting polyhedra for n adjacent cubes.
See A347918 for the number of k-faced polyhedra for each value of n.

Examples

			a(1) = 96. A single cube, with eight vertices, has 14 internal cutting planes resulting in 96 polyhedra. See A333539 and A338571.
a(2) = 2968. Two adjacent cubes, with twelve vertices, have 51 internal cutting planes resulting in 2968 polyhedra.
a(3) = 42384. Three adjacent cubes, with sixteen vertices, have 124 internal cutting planes resulting in 42384 polyhedra.
a(4) = 319416. Four adjacent cubes, with twenty vertices, have 245 internal cutting planes resulting in 319416 polyhedra.
		

Crossrefs

Cf. A347918 (number of k-faced polyhedra), A333539 (n-dimensional cube), A338571 (Platonic solids), A338783 (n-prism), A338809 (n-bipyramid), A007588.

Formula

a(1) = A333539(3).
Conjectured formula for the number of internal cutting planes for n adjacent cubes is A007588(n+1).
Showing 1-6 of 6 results.