cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338579 Triangle T(D,N) read by rows, 1 <= N < D >= 2, where T(D,N) is the position of the fraction N/D in the Farey tree (or Stern-Brocot subtree) A007305/A007306.

Original entry on oeis.org

2, 3, 4, 5, 2, 8, 9, 6, 7, 16, 17, 3, 2, 4, 32, 33, 10, 12, 13, 15, 64, 65, 5, 11, 2, 14, 8, 128, 129, 18, 3, 24, 25, 4, 31, 256, 257, 9, 20, 6, 2, 7, 29, 16, 512, 513, 34, 19, 21, 48, 49, 28, 30, 63, 1024, 1025, 17, 5, 3, 23, 2, 26, 4, 8, 32, 2048
Offset: 2

Views

Author

Hugo Pfoertner, Nov 10 2020

Keywords

Comments

Fractions are reduced to lowest terms.

Examples

			The triangle begins
     N     1   2  3  4  5  6   7   8   9   10   11   12   13    14    15
   D \------------------------------------------------------------------
   2 |     2   .  .  .  .  .   .   .   .    .    .    .    .     .     .
   3 |     3   4  .  .  .  .   .   .   .    .    .    .    .     .     .
   4 |     5   2  8  .  .  .   .   .   .    .    .    .    .     .     .
   5 |     9   6  7 16  .  .   .   .   .    .    .    .    .     .     .
   6 |    17   3  2  4 32  .   .   .   .    .    .    .    .     .     .
   7 |    33  10 12 13 15 64   .   .   .    .    .    .    .     .     .
   8 |    65   5 11  2 14  8 128   .   .    .    .    .    .     .     .
   9 |   129  18  3 24 25  4  31 256   .    .    .    .    .     .     .
  10 |   257   9 20  6  2  7  29  16 512    .    .    .    .     .     .
  11 |   513  34 19 21 48 49  28  30  63 1024    .    .    .     .     .
  12 |  1025  17  5  3 23  2  26   4   8   32 2048    .    .     .     .
  13 |  2049  66 36 40 22 96  97  27  57   61  127 4096    .     .     .
  14 |  4097  33 35 10 41 12   2  13  56   15   62   64 8192     .     .
  15 |  8193 130  9 37  3  6 192 193   7    4   60   16  255 16384     .
  16 | 16385  65 68  5 80 11  47   2  50   14  113    8  125   128 32768
.
T(7,2) = 10 because A007306(10) = 7 and A007305(10) = 2 is the required double match, i.e., the position of the fraction 2/7 in the Farey tree is 10.
T(14,4) = T(7,2) = 10, because the fraction 4/14 reduced to lowest terms is 2/7.
T(16,12) = 8, because the fraction 12/16 reduced to lowest terms is 3/4, with the double match A007306(8)=4 and A007305(8)=3.
		

Crossrefs

Programs

  • PARI
    \\ using Yosu Yurramendi's formulas
    a338579(lim)={
    my(a7305=vectorsmall(2+2^(lim+2)),a7306=vectorsmall(2+2^(lim+2)));
      a7305[1]=1;
      for(m=1,lim,
         for(k=0,2^(m-1)-1,
          a7305[2^m+k]=a7305[2^(m-1)+k];
          a7305[2^m+2^(m-1)+k]=a7305[2^(m-1)+k]+a7305[2^m-k-1]
         )
      );
      a7306[1]=1;a7306[2]=2;
      for(m=0,lim,
         for(k=1,2^m,
          a7306[2^(m+1)+k]=a7306[2^m+k] + a7306[k];
          a7306[2^(m+1)-k+1]=a7306[2^m+k]
         )
      );
       my(findinFS(x)=for(k=2,#a7306,
          if(!(a7305[k-1]/a7306[k]-x),return(k)));0);
      for(de=2,lim+2,for(nu=1,de-1,my(q=nu/de);print1(findinFS(q),", ")))
    };
    a338579(10);
    
  • PARI
    T(d,n) = my(ret=1); d-=n; while(n!=d, ret<<=1; if(n>d, n-=d;ret++, d-=n)); ret+1; \\ Kevin Ryde, Nov 11 2020