cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338655 a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 3, 5, 9, 9, 22, 13, 32, 35, 53, 21, 121, 25, 96, 177, 166, 33, 297, 37, 491, 417, 218, 45, 1002, 549, 297, 705, 1375, 57, 2418, 61, 1640, 1405, 491, 3887, 4659, 73, 606, 2233, 8156, 81, 8989, 85, 6189, 11955, 872, 93, 16550, 10387, 12927, 4757, 11111, 105, 22392, 25757
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 1, #] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^(k+1).
If p is prime, a(p) = 2*p - 1.
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,n/gcd(n,k)).
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 1,gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)