A090287 Smallest prime obtained by sandwiching n between a number with identical digits, or 0 if no such prime exists. Primes of the form k n k where all the digits of k are identical.
101, 313, 727, 131, 11411, 151, 777767777, 373, 181, 191, 9109, 0, 7127, 331333, 991499, 1151, 3163, 1171, 1181, 9199, 1201, 112111, 0, 1231, 7247, 3253, 7777777777267777777777, 1111271111, 11128111, 1291, 1301, 3313, 1321, 0, 3343, 333533, 1361, 3373, 1381
Offset: 0
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..365
- Chai Wah Wu, On a conjecture regarding primality of numbers constructed from prepending and appending identical digits, arXiv:1503.08883 [math.NT], 2015.
- Index entries for primes involving decimal expansion of n
Programs
-
Mathematica
(* f(n) defined by José de Jesús Camacho Medina in A010785. *) lst={};f[m_]:=IntegerDigits[(m-9*Floor[(m-1)/9])*(10^Floor[(m+8)/9]-1)/9]; g[n_]:=FromDigits[Flatten[{f[m],IntegerDigits[n],f[m]}]]; Do[m=1;While[True,If[Mod[Length[IntegerDigits[n]],2]==0&&IntegerDigits[n]==Reverse[IntegerDigits[n]], AppendTo[lst,0];Break[],If[PrimeQ[g[n]],AppendTo[lst,g[n]];Break[]]];m++],{n,25}]; lst (* Ivan N. Ianakiev, Mar 23 2015 *)
-
Python
from gmpy2 import is_prime, mpz, digits def A090287(n, limit=2000): sn = str(n) if n in (231, 420, 759) or not (len(sn) % 2 or n % 11): return 0 for i in range(1, limit+1): for j in range(1, 10, 2): si = digits(j, 10)*i p = mpz(si+sn+si) if is_prime(p): return int(p) else: return 'search limit reached.' # Chai Wah Wu, Mar 31 2015
Extensions
a(0) from Chai Wah Wu, Mar 23 2015
a(26)-a(38) from Chai Wah Wu, Mar 24 2015
Comments