cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338739 Number of true-palindromic compositions of n.

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 8, 16, 16, 31, 32, 62, 63, 124, 126, 248, 252, 496, 504, 991, 1007, 1982, 2013, 3960, 4023, 7914, 8040, 15816, 16068, 31609, 32112, 63171, 64180, 126251, 128266, 252318, 256347, 504268, 512324, 1007801, 1023909, 2014131, 2046338, 4025329, 4089724
Offset: 1

Views

Author

Michel Marcus, Nov 06 2020

Keywords

Comments

A true-palindromic composition or true-palindrome to be a composition whose digit-comma-sequence is the same whether read from left to right or right to left. [Shapcott p. 35]

Examples

			(12, 6, 21) is a true-palindromic composition of 39.
(126, 621) is a true-palindromic composition of 747.
		

Crossrefs

Cf. A016116 (symmetric compositions), A338740.

Programs

  • PARI
    rev(n) = Vecrev(n=digits(n)); \\ A004086
    ispal(n) = Vecrev(n=digits(n))==n; \\ A002113
    radd(n) = fromdigits(Vecrev(digits(n))) + n; \\ A056964
    lista(nn) = my(x='x+O('x^(nn))); Vec(sum(k=0, nn, if (ispal(k), x^k))/(1 - sum(k=1, nn, if (k%10, x^radd(k)))) - 1);

Formula

Shapcott gives a g.f on p. 3, and 1 should be subtracted to get sequence for n>=1.