cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338785 a(n) is the least number k such that continued fraction for sqrt(prime(k)) has period n.

Original entry on oeis.org

1, 2, 13, 4, 6, 8, 21, 11, 30, 14, 18, 27, 44, 41, 29, 43, 37, 34, 68, 36, 42, 94, 147, 58, 88, 47, 186, 93, 142, 75, 110, 90, 112, 67, 178, 228, 82, 114, 100, 222, 187, 105, 191, 143, 204, 131, 180, 115, 172, 177, 197, 133, 263, 272, 353, 175, 231, 242, 322, 157
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			sqrt(prime(1))  = sqrt(2)  = 1 + 1/(2 + 1/(2 + ...)), period 1.
sqrt(prime(2))  = sqrt(3)  = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ...)))), period 2.
sqrt(prime(13)) = sqrt(41) = 6 + 1/(2 + 1/(2 + 1/(12 + 1/(2 + 1/(2 + 1/(12 + ...)))))), period 3.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    A:= Vector(N): count:= 0: p:= 1:
    for n from 1 while count < N do
      p:= nextprime(p);
      v:= nops(numtheory:-cfrac(sqrt(p),periodic,quotients)[2]);
      if v <= N and A[v] = 0 then count:= count+1; A[v]:= n; fi
    od:
    convert(A,list); # Robert Israel, Nov 11 2020
  • Mathematica
    Table[SelectFirst[Range[500], Length[Last[ContinuedFraction[Sqrt[Prime[#]]]]] == n &], {n, 60}]

Formula

a(n) = A000720(A059800(n)).