A338785 a(n) is the least number k such that continued fraction for sqrt(prime(k)) has period n.
1, 2, 13, 4, 6, 8, 21, 11, 30, 14, 18, 27, 44, 41, 29, 43, 37, 34, 68, 36, 42, 94, 147, 58, 88, 47, 186, 93, 142, 75, 110, 90, 112, 67, 178, 228, 82, 114, 100, 222, 187, 105, 191, 143, 204, 131, 180, 115, 172, 177, 197, 133, 263, 272, 353, 175, 231, 242, 322, 157
Offset: 1
Keywords
Examples
sqrt(prime(1)) = sqrt(2) = 1 + 1/(2 + 1/(2 + ...)), period 1. sqrt(prime(2)) = sqrt(3) = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ...)))), period 2. sqrt(prime(13)) = sqrt(41) = 6 + 1/(2 + 1/(2 + 1/(12 + 1/(2 + 1/(2 + 1/(12 + ...)))))), period 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
N:= 100: # for a(1)..a(N) A:= Vector(N): count:= 0: p:= 1: for n from 1 while count < N do p:= nextprime(p); v:= nops(numtheory:-cfrac(sqrt(p),periodic,quotients)[2]); if v <= N and A[v] = 0 then count:= count+1; A[v]:= n; fi od: convert(A,list); # Robert Israel, Nov 11 2020
-
Mathematica
Table[SelectFirst[Range[500], Length[Last[ContinuedFraction[Sqrt[Prime[#]]]]] == n &], {n, 60}]