A338796 Triangle T read by rows: T(n, k) is the k-th row sum of the symmetric Toeplitz matrix M(n) whose first row consists of a single zero followed by successive positive integers repeated (A004526).
0, 1, 1, 2, 2, 2, 4, 3, 3, 4, 6, 5, 4, 5, 6, 9, 7, 6, 6, 7, 9, 12, 10, 8, 8, 8, 10, 12, 16, 13, 11, 10, 10, 11, 13, 16, 20, 17, 14, 13, 12, 13, 14, 17, 20, 25, 21, 18, 16, 15, 15, 16, 18, 21, 25, 30, 26, 22, 20, 18, 18, 18, 20, 22, 26, 30, 36, 31, 27, 24, 22, 21, 21, 22, 24, 27, 31, 36
Offset: 1
Examples
n\k| 1 2 3 4 5 6 ---+------------ 1 | 0 2 | 1 1 3 | 2 2 2 4 | 4 3 3 4 5 | 6 5 4 5 6 6 | 9 7 6 6 7 9 ... For n = 4 the matrix M(4) is 0 1 1 2 1 0 1 1 1 1 0 1 2 1 1 0 and therefore T(4, 1) = 4, T(4, 2) = 3, T(4, 3) = 3 and T(4, 4) = 4.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=((-1)^k+(-1)^(n-k+1)+4k^2+4n+2n^2-4k(n+1))/8; Flatten[Table[T[n,k],{n,12},{k,n}]] (* or *) r[n_]:=Table[SeriesCoefficient[(2x^3y^2+y^2(1+y)+x^2(y-3y^2)-x(-1+2y+y^2))/((1-x)^3(1+x)(1-y)^3(1+y)),{x,0,i},{y,0,j}],{i,n,n},{j, n}]; Flatten[Array[r,12]] (* or *) r[n_]:=Table[SeriesCoefficient[1/8 E^(-x-y)(-1+E^(2 x)+2 E^(2 (x+y))(x (3+x)-2 x y+2 y^2)),{x, 0, i},{y, 0, j}]i!j!,{i, n, n},{j, n}]; Flatten[Array[r, 12]]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j\2, if (j==1, i\2)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; } T(n, k) = my(m = tm(n)); sum(i=1, n, m[i, k]); matrix(10, 10, n, k, if (n>=k, T(n,k), 0)) \\ Michel Marcus, Nov 12 2020
Formula
O.g.f.: (2*x^3*y^2 + y^2*(1 + y) + x^2*(y - 3*y^2) - x*(-1 + 2*y + y^2))/((1 - x)^3*(1 + x) *(1 - y)^3*(1 + y)).
E.g.f.: exp(-x-y)*(exp(2*x) + 2*exp(2*(x+y))*(x*(3 + x) - 2*x*y + 2*y^2 - 1))/8.
T(n, k) = ((-1)^k + (-1)^(n-k+1) + 4*k^2 + 4*n + 2*n^2 - 4*k*(n + 1))/8.
T(n, 1) = T(n, n) = A002620(n).
T(n, 2) = A033638(n-1).
T(n, 3) = A290743(n-2).
Sum_{k=1..n} T(n, k) = A212964(n+1).