cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338798 a(n) = Sum_{k=1..n-1} lcm(lcm(n, k), lcm(n, n-k)).

Original entry on oeis.org

0, 2, 12, 28, 100, 90, 392, 408, 792, 810, 2420, 1356, 4732, 3346, 4560, 6320, 13872, 7506, 21660, 12140, 18900, 21802, 46552, 22008, 53000, 43290, 61668, 49980, 117740, 48450, 153760, 100192, 123552, 129506, 169260, 111420, 312132, 203642, 245544, 195640
Offset: 1

Views

Author

Sebastian Karlsson, Jan 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[LCM[LCM[n, k], LCM[n, n - k]], {k, 1, n - 1}];
    Table[a[n], {n, 1, 40}] (* Robert P. P. McKone, Jan 18 2021 *)
  • PARI
    a(n) = sum(k=1, n-1, lcm(lcm(n, k), lcm(n, n-k))); \\ Michel Marcus, Jan 18 2021
  • Python
    from math import gcd
    for n in range(1, 41):
        print(n*sum([k*(n-k)//(gcd(n,k)**2) for k in range(1, n)]), end=', ')
    

Formula

a(n) = n*Sum_{k=1..n-1} k*(n-k)/gcd(n,k)^2.
a(n) = (1/6)*n*Sum_{d|n} d*(d*phi(d) - A023900(d)).
a(p^e) = (1/6)*p^(e+1)*(p^e-1)*(p^(e+1) + p^(2*e+1) + p^2 + 2*p + 1)/(p^2 + p + 1).
a(prime(n)) = A138421(n). - Michel Marcus, Jan 20 2021