cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339380 Number of partitions of n into an even number of primes (counting 1 as a prime).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 5, 4, 9, 7, 14, 11, 22, 18, 33, 27, 48, 40, 69, 58, 97, 82, 134, 114, 183, 157, 246, 212, 327, 284, 431, 376, 562, 493, 728, 640, 934, 825, 1191, 1056, 1508, 1341, 1899, 1694, 2377, 2126, 2960, 2654, 3668, 3297, 4523, 4075, 5554, 5015, 6792, 6145
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(6) = 5 because we have [5, 1], [3, 3], [3, 1, 1, 1], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; (p->
          `if`(n=0, t, `if`(i<0, 0, b(n, i-1, t)+
          `if`(p>n, 0, b(n-p, i, 1-t)))))(`if`(i<1, 1, ithprime(i)))
        end:
    a:= n-> b(n, numtheory[pi](n), 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 02 2020
  • Mathematica
    nmax = 55; CoefficientList[Series[(1/2) ((1/(1 - x)) Product[1/(1 - x^Prime[k]), {k, 1, nmax}] + (1/(1 + x)) Product[1/(1 + x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    Table[Count[(Boole[PrimeQ/@(IntegerPartitions[n]/.(1->2))]),?(EvenQ[Length[#]] && FreeQ[ #,0]&)],{n,0,60}] (* _Harvey P. Dale, Aug 20 2024 *)

Formula

G.f.: (1/2) * ((1/(1 - x)) * Product_{k>=1} 1 / (1 - x^prime(k)) + (1/(1 + x)) * Product_{k>=1} 1 / (1 + x^prime(k))).
a(n) = (A034891(n) + A338826(n)) / 2.

A339381 Number of partitions of n into an odd number of primes (counting 1 as a prime).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 3, 7, 5, 11, 9, 18, 14, 27, 22, 40, 33, 58, 48, 82, 69, 114, 97, 157, 134, 212, 183, 284, 246, 376, 327, 493, 431, 640, 562, 825, 728, 1056, 934, 1341, 1191, 1694, 1508, 2126, 1899, 2654, 2377, 3297, 2960, 4075, 3668, 5015, 4523, 6145, 5554, 7499
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 02 2020

Keywords

Examples

			a(6) = 3 because we have [3, 2, 1], [2, 2, 2] and [2, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; (p->
          `if`(n=0, t, `if`(i<0, 0, b(n, i-1, t)+
          `if`(p>n, 0, b(n-p, i, 1-t)))))(`if`(i<1, 1, ithprime(i)))
        end:
    a:= n-> b(n, numtheory[pi](n), 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 02 2020
  • Mathematica
    nmax = 55; CoefficientList[Series[(1/2) ((1/(1 - x)) Product[1/(1 - x^Prime[k]), {k, 1, nmax}] - (1/(1 + x)) Product[1/(1 + x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * ((1/(1 - x)) * Product_{k>=1} 1 / (1 - x^prime(k)) - (1/(1 + x)) * Product_{k>=1} 1 / (1 + x^prime(k))).
a(n) = (A034891(n) - A338826(n)) / 2.
Showing 1-2 of 2 results.