A338850 Continued fraction expansion of the smallest constant 'c' such that the numbers 1+floor(c^(n^1.5)) are distinct primes for all n >= 0.
2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 13, 6, 1, 3, 5, 1, 5, 1, 7, 17, 1, 3, 1, 11, 18, 3, 1, 2, 1, 2, 1, 2, 17, 15, 1, 69, 3, 1, 2, 1, 1, 1, 1, 33, 1, 3, 2, 4, 17, 1, 3, 2, 2, 1, 2, 6, 1, 11, 3, 2, 1, 1, 1, 17, 1, 7, 5, 2, 2, 2, 84, 1, 8, 3, 1, 1, 22, 3698, 2, 2, 1, 1, 2, 1, 7, 2, 1, 1, 1, 1, 3, 1, 5, 15, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 16, 1, 7, 2, 2, 3, 1, 9
Offset: 1
Examples
2+1/(3+1/(1+1/(2+1/(1+1/(2+1/(1+1/(1+1/(1+1/(1+1/(3+1/(1+1/(2+1/(13+1/(6]= 590652/260429 = 2.26799626769... The constant 'c' is equal to 2.267996267706724247328553280725371774527042254400818772275…
Programs
-
PARI
c(n=40, prec=100)={ my(curprec=default(realprecision)); default(realprecision, max(prec, curprec)); my(a=List([2]), d=1.5, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); ); for(j=1, n-1, b=1+floor(c^(j^d)); until(ok, ok=1; p=smpr(b); listput(a,p,j+1); if(p!=b, c=(p-1)^(j^(-d)); for(k=1,j-2, b=1+floor(c^(k^d)); if(b!=a[k+1], ok=0; j=k; break; ); ); ); ); ); default(realprecision, curprec); return(c); }; contfrac(c(50,200),115) \\ François Marques, Nov 17 2020