cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338873 Array T(n, m) read by ascending antidiagonals: numerators of shifted Bernoulli numbers B(n, m) where m >= 0.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 0, -1, -1, 1, -1, -1, 1, -19, -1, 1, 1, 0, 11, -53, -19, -1, 1, -1, 1, 43, -3113, -709, -713, -1, 1, 1, 0, -289, 349, -28813, -63367, -629, -1, 1, -1, -1, -313, 174947, -46721, -34877471, -351541, -1493, -1, 1, 1, 0, -581, 704101, -20744051, -2449743889, -176710589, -18054401, -36287, -1, 1
Offset: 0

Views

Author

Stefano Spezia, Nov 13 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3       4 ...
---+------------------------------------
0  |   1       1       1       1       1 ...
1  |  -1      -1      -1      -1      -1 ...
2  |   1       1      -1     -19     -19 ...
3  |  -1       0       1     -53    -709 ...
4  |   1      -1      11   -3113  -28813 ...
...
Related table of shifted Bernoulli numbers B(n, m):
   1      1        1              1                1 ...
  -1   -1/2     -1/6          -1/24           -1/120 ...
   1    1/6    -1/36       -19/1440         -19/7200 ...
  -1      0    1/180      -53/11520      -709/672000 ...
   1  -1/30  11/1080  -3113/2419200  -28813/60480000 ...
  ...
		

Crossrefs

Cf. A000012 (1st row), A027641 (2nd column), A027642, A033999 (1st column), A141056, A164555, A176327, A226513 (high-order Fubini numbers), A338875, A338876.
Cf. A338874 (denominators).

Programs

  • Mathematica
    B[n_,m_]:=n!Coefficient[Series[x^m/(Exp[x]-Sum[x^k/k!,{k,0,m}]+x^m),{x,0,n}],x,n]; Table[Numerator[B[n-m,m]],{n,0,10},{m,0,n}]//Flatten

Formula

T(n, m) = numerator(B(n, m)).
B(n, m) = [x^n] n!*x^m/(exp(x) - E_m(x) + x^m), where E_m(x) = Sum_{n=0..m} x^n/n! (see Equation 2.1 in Komatsu).
B(n, m) = - Sum_{k=0..n-1} n!*B(k, m)/((n - k + m)!*k!) for n > 0 (see Lemma 2.1 in Komatsu).
B(n, m) = n!*Sum_{k=1..n} (-1)^k*Sum_{i_1+...+i_k=n; i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 (see Theorem 2.2 in Komatsu).
B(n, m) = (-1)^n*n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, 1/(m + 2)!, ..., 1/(m + n)! (see Theorem 2.3 in Komatsu).
B(1, m) = -1/(m + 1)! (see Theorem 2.4 in Komatsu).
B(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(t_1+…+t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 2.7 in Komatsu).
(-1)^n/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in B(1, m), 1, 0, ..., 0 and whose first column consists in B(1, m), B(2, m)/2!, ..., B(n, m)/n! (see Theorem 2.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*B(k, m)*B(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! - 1)/(m*m!))^(n-l-1)*(l*(m! - 1) + m)/l!*B(l, m) - (n - m)/m*B(n, m) for m > 0 (see Theorem 4.1 in Komatsu).

A338874 Array T(n, m) read by ascending antidiagonals: denominators of shifted Bernoulli numbers B(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 1, 36, 24, 1, 1, 30, 180, 1440, 120, 1, 1, 1, 1080, 11520, 7200, 720, 1, 1, 42, 9072, 2419200, 672000, 1814400, 5040, 1, 1, 1, 90720, 2322432, 60480000, 435456000, 12700800, 40320, 1, 1, 30, 38880, 232243200, 207360000, 548674560000, 21337344000, 270950400, 362880, 1
Offset: 0

Views

Author

Stefano Spezia, Nov 13 2020

Keywords

Examples

			Array T(n, m):
n\m|   0         1         2         3         4 ...
---+--------------------------------------------
0  |   1         1         1         1         1 ...
1  |   1         2         6        24       120 ...
2  |   1         6        36      1440      7200 ...
3  |   1         1       180     11520    672000 ...
4  |   1        30      1080   2419200  60480000 ...
...
Related table of shifted Bernoulli numbers B(n, m):
   1      1        1              1                1 ...
  -1   -1/2     -1/6          -1/24           -1/120 ...
   1    1/6    -1/36       -19/1440         -19/7200 ...
  -1      0    1/180      -53/11520      -709/672000 ...
   1  -1/30  11/1080  -3113/2419200  -28813/60480000 ...
  ...
		

Crossrefs

Cf. A000012 (1st column and 1st row), A000142 (2nd row), A027641, A027642 (2nd column), A141056, A164555, A176327, A226513 (high-order Fubini numbers), A338875, A338876.
Cf. A338873 (numerators).

Programs

  • Mathematica
    B[n_, m_]:=n!Coefficient[Series[x^m/(Exp[x]-Sum[x^k/k!, {k, 0, m}]+x^m), {x, 0, n}], x, n]; Table[Denominator[B[n-m,m]],{n,0,9},{m,0,n}]//Flatten

Formula

T(n, m) = denominator(B(n, m)).
B(n, m) = [x^n] n!*x^m/(exp(x) - E_m(x) + x^m), where E_m(x) = Sum_{n=0..m} x^n/n! (see Equation 2.1 in Komatsu).
B(n, m) = - Sum_{k=0..n-1} n!*B(k, m)/((n - k + m)!*k!) for n > 0 (see Lemma 2.1 in Komatsu).
B(n, m) = n!*Sum_{k=1..n} (-1)^k*Sum_{i_1+...+i_k=n; i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 (see Theorem 2.2 in Komatsu).
B(n, m) = (-1)^n*n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, 1/(m + 2)!, ..., 1/(m + n)! (see Theorem 2.3 in Komatsu).
B(1, m) = -1/(m + 1)! (see Theorem 2.4 in Komatsu).
B(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(t_1+…+t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 2.7 in Komatsu).
(-1)^n/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in B(1, m), 1, 0, ..., 0 and whose first column consists in B(1, m), B(2, m)/2!, ..., B(n, m)/n! (see Theorem 2.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*B(k, m)*B(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! - 1)/(m*m!))^(n-l-1)*(l*(m! - 1) + m)/l!*B(l, m) - (n - m)/m*B(n, m) for m > 0 (see Theorem 4.1 in Komatsu).

A338875 Array T(n, m) read by ascending antidiagonals: numerators of shifted Fubini numbers F(n, m) where m >= 0.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 5, 1, 1, 75, 2, 5, 1, 1, 541, 191, 29, 29, 1, 1, 4683, 76, 263, 149, 7, 1, 1, 47293, 5081, 4157, 24967, 2687, 727, 1, 1, 545835, 674, 93881, 115567, 44027, 66247, 631, 1, 1, 7087261, 386237, 21209, 377909, 31627, 37728769, 354061, 4481, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 25 2020

Keywords

Examples

			Array T(n, m):
n\m|   0       1       2       3 ...
---+--------------------------------
0  |   1       1       1       1 ...
1  |   1       1       1       1 ...
2  |   3       5       5      29 ...
3  |  13       2      29     149 ...
...
Related table of shifted Fubini numbers F(n, m):
   1   1      1         1 ...
   1 1/2    1/6      1/24 ...
   3 5/6   5/36   29/1440 ...
  13   2 29/180 149/11520 ...
  ...
		

Crossrefs

Cf. A000012 (n = 0 and n = 1), A000670 (m = 0), A226513 (high-order Fubini numbers), A232472, A232473, A232474, A257565, A338873, A338874.
Cf. A338876 (denominators).

Programs

  • Mathematica
    F[n_,m_]:=n!Coefficient[Series[x^m/(x^m-Exp[x]+Sum[x^k/k!,{k,0,m}]),{x,0,n}],x,n]; Table[Numerator[F[n-m,m]],{n,0,9},{m,0,n}]//Flatten
  • PARI
    tm(n, m) = {my(m = matrix(n, n, i, j, if (i==1, if (j==1, 1/(m + 1)!, if (j==2, 1)), if (j==1, (-1)^(i+1)/(m + i)!)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
    T(n, m) = numerator(n!*matdet(tm(n, m))); \\ Michel Marcus, Dec 31 2020

Formula

T(n, m) = numerator(F(n, m)).
F(n, m) = n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, -1/(m + 2)!, ..., (-1)^(n-1)/(m + n)! (see Proposition 5.1 in Komatsu).
F(n, m) = n!*Sum_{k=0..n-1} F(k, m)/((n - k + m)!*k!) for n > 0 and m >= 0 with F(0, m) = 1 (see Lemma 5.2).
F(n, m) = [x^n] n!*x^m/(x^m - exp(x) + E_m(x)), where E_m(x) = Sum_{n=0..m} x^n/n! (see Theorem 5.3 in Komatsu).
F(n, m) = n!*Sum_{k=1..n} Sum_{i_1+...+i_k=n, i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 and m >= 0 (see Theorem 5.4).
F(1, m) = 1/(m + 1)! (see Theorem 5.5 in Komatsu).
F(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(n-t_1-...-t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 5.7 in Komatsu).
(-1)^(n-1)/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in F(1, m), 1, 0, ..., 0 and whose first column consists in F(1, m), F(2, m)/2!, ..., F(n, m)/n! for n > 0 (see Theorem 5.8 in Komatsu).
Sum_{k=0..n} binomial(n, k)*F(k, m)*F(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! + 1)/(m*m!))^(n-l-1)*(l*(m! + 1) - m)/l!*F(l, m) - (n - m)/m*F(n, m) for m > 0 (see Theorem 5.11 in Komatsu).
Showing 1-3 of 3 results.