A338895 Three-column table read by rows giving Pythagorean triples [a,b,c] that are the (constant) differences between consecutive triples in rows of A338275.
0, 4, 4, 6, 8, 10, 0, 16, 16, 16, 12, 20, 10, 24, 26, 0, 36, 36, 30, 16, 34, 24, 32, 40, 14, 48, 50, 0, 64, 64, 48, 20, 52, 42, 40, 58, 32, 60, 68, 18, 80, 82, 0, 100, 100, 70, 24, 74, 64, 48, 80, 54, 72, 90, 40, 96, 104, 22, 120, 122, 0, 144, 144
Offset: 1
Examples
The table begins: [ 0, 4, 4], [ 6, 8, 10], [ 0, 16, 16], [16, 12, 20], [10, 24, 26], [ 0, 36, 36], [30, 16, 34], [24, 32, 40], [14, 48, 50], [ 0, 64, 64], [48, 20, 52], [42, 40, 58], [32, 60, 68], [18, 80, 82], [ 0, 100, 100], [70, 24, 74], [64, 48, 80], [54, 72, 90], [40, 96, 104], [22, 120, 122], [ 0, 144, 144], ...
Links
- David Lovler, Table of n, a(n) for n = 1..300
- David Lovler, Triples for m up to 100
Programs
-
Mathematica
Table[{((#1 - 1)^2 - #2^2)/2, (#1 - 1) #2, ((#1 - 1)^2 + #2^2)/2} & @@ {m, n}, {m, 3, 13, 2}, {n, 2, m, 2}] // Flatten (* Michael De Vlieger, Dec 04 2020 *)
-
PARI
lista(mm) = {forstep (m=3, mm, 2, forstep (n=2, m, 2, print([((m-1)^2 - n^2)/2, (m-1)*n, ((m-1)^2 + n^2)/2]);););} \\ Michel Marcus, Dec 04 2020
Formula
a = ((m-1)^2 - n^2)/2, b = (m-1)*n, c = ((m-1)^2 + n^2)/2, where m and n generate the A338275 row in question.