A338911 Numbers of the form prime(x) * prime(y) where x and y are both even.
9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 9: {2,2} 237: {2,22} 481: {6,12} 21: {2,4} 247: {6,8} 489: {2,38} 39: {2,6} 259: {4,12} 497: {4,20} 49: {4,4} 267: {2,24} 519: {2,40} 57: {2,8} 301: {4,14} 543: {2,42} 87: {2,10} 303: {2,26} 551: {8,10} 91: {4,6} 321: {2,28} 553: {4,22} 111: {2,12} 339: {2,30} 559: {6,14} 129: {2,14} 361: {8,8} 579: {2,44} 133: {4,8} 371: {4,16} 597: {2,46} 159: {2,16} 377: {6,10} 623: {4,24} 169: {6,6} 393: {2,32} 669: {2,48} 183: {2,18} 417: {2,34} 687: {2,50} 203: {4,10} 427: {4,18} 689: {6,16} 213: {2,20} 453: {2,36} 703: {8,12}
Crossrefs
A338910 is the odd instead of even version.
A339004 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338909 lists semiprimes with non-relatively prime indices.
Programs
-
Maple
q:= n-> (l-> add(i[2], i=l)=2 and andmap(i-> numtheory[pi](i[1])::even, l))(ifactors(n)[2]): select(q, [$1..1000])[]; # Alois P. Heinz, Nov 23 2020
-
Mathematica
Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
-
Python
from math import isqrt from sympy import primerange, primepi def A338911(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1) return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025