cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338911 Numbers of the form prime(x) * prime(y) where x and y are both even.

Original entry on oeis.org

9, 21, 39, 49, 57, 87, 91, 111, 129, 133, 159, 169, 183, 203, 213, 237, 247, 259, 267, 301, 303, 321, 339, 361, 371, 377, 393, 417, 427, 453, 481, 489, 497, 519, 543, 551, 553, 559, 579, 597, 623, 669, 687, 689, 703, 707, 717, 749, 753, 789, 791, 793, 813, 817
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}     237: {2,22}    481: {6,12}
     21: {2,4}     247: {6,8}     489: {2,38}
     39: {2,6}     259: {4,12}    497: {4,20}
     49: {4,4}     267: {2,24}    519: {2,40}
     57: {2,8}     301: {4,14}    543: {2,42}
     87: {2,10}    303: {2,26}    551: {8,10}
     91: {4,6}     321: {2,28}    553: {4,22}
    111: {2,12}    339: {2,30}    559: {6,14}
    129: {2,14}    361: {8,8}     579: {2,44}
    133: {4,8}     371: {4,16}    597: {2,46}
    159: {2,16}    377: {6,10}    623: {4,24}
    169: {6,6}     393: {2,32}    669: {2,48}
    183: {2,18}    417: {2,34}    687: {2,50}
    203: {4,10}    427: {4,18}    689: {6,16}
    213: {2,20}    453: {2,36}    703: {8,12}
		

Crossrefs

A338910 is the odd instead of even version.
A339004 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A338899, A270650, A270652 list prime indices of squarefree semiprimes.
A289182/A115392 list the positions of odd/even terms of A001358.
A300912 lists semiprimes with relatively prime indices.
A318990 lists semiprimes with divisible indices.
A338904 groups semiprimes by weight.
A338906/A338907 list semiprimes of even/odd weight.
A338909 lists semiprimes with non-relatively prime indices.
A338912 and A338913 list prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.

Programs

  • Maple
    q:= n-> (l-> add(i[2], i=l)=2 and andmap(i->
        numtheory[pi](i[1])::even, l))(ifactors(n)[2]):
    select(q, [$1..1000])[];  # Alois P. Heinz, Nov 23 2020
  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
  • Python
    from math import isqrt
    from sympy import primerange, primepi
    def A338911(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),-1) if a&1^1)
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Numbers m such that A001222(m) = 2 and A195017(m) = -2. - Peter Munn, Jan 17 2021