A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.
1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0
Keywords
Examples
The a(2) = 1 through a(10) = 16 partitions: (11) (21) (22) (32) (33) (43) (44) (54) (55) (31) (41) (42) (52) (53) (63) (64) (2111) (51) (61) (62) (72) (73) (2211) (2221) (71) (81) (82) (3111) (3211) (3221) (3222) (91) (4111) (3311) (3321) (3322) (4211) (4221) (3331) (5111) (4311) (4222) (5211) (4321) (6111) (4411) (222111) (5221) (321111) (5311) (6211) (7111) (322111) (421111) For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]
Extensions
More terms from Jinyuan Wang, Feb 14 2025
Comments