A338930 Numbers k such that Sum_{d | k} (d^2 mod k) is prime.
8, 16, 18, 21, 39, 45, 55, 57, 93, 98, 99, 100, 111, 119, 129, 144, 153, 162, 183, 203, 205, 219, 231, 237, 245, 261, 273, 291, 309, 341, 355, 377, 381, 413, 417, 429, 471, 481, 484, 489, 505, 511, 513, 517, 543, 583, 603, 609, 629, 637, 639, 651, 655, 669, 676, 687, 689, 697, 707, 722, 723, 731
Offset: 1
Keywords
Examples
a(3) = 18 is in the sequence because Sum_{d|18} (d^2 mod 18) = (1^2 mod 18) + (2^2 mod 18) + (3^2 mod 18) + (6^2 mod 18) + (9^2 mod 18) + (18^2 mod 18) = 1 + 4 + 9 + 0 + 9 + 0 = 23 is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A028982.
Programs
-
Maple
filter:= proc(n) local t; isprime(add(t^2 mod n, t = numtheory:-divisors(n))) end proc: select(filter, [$1..1000]);
-
Mathematica
Select[Range[800],PrimeQ[Total[PowerMod[Divisors[#],2,#]]]&] (* Harvey P. Dale, Dec 31 2021 *)
-
PARI
isok(m) = isprime(sumdiv(m, d, lift(Mod(d, m)^2))); \\ Michel Marcus, Nov 16 2020
Comments