cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338939 a(n) is the number of partitions n = a + b such that a*b is a perfect square.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 0, 3, 0, 1, 1, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 1, 2, 3, 0, 1, 1, 3, 0, 1, 0, 3, 1, 1, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 0, 5, 1, 3, 1, 1, 1, 1, 0, 3, 0, 3, 1, 1, 0, 1, 4, 1, 0, 3, 0, 3, 0, 1, 1, 3, 2, 1, 0, 3, 0, 3, 0, 3, 0, 1, 4, 1, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 1, 0, 5
Offset: 1

Views

Author

Hein van Winkel, Nov 16 2020

Keywords

Comments

Number of ways to regroup the unit squares of a rectangle with semiperimeter n into a square.
a(n) > 0 for n in A337140.

Examples

			n = 10 = 1 + 9 = 2 + 8 = 5 + 5 with 1*9 = 3^2 and 2*8 = 4^2 and 5*5 = 5^2. Then a(10) = 3. Also 10 = 2^1 * 5^1. So t=1, a_1=1 and a(n) = A = 2*1+1 = 3.
		

Crossrefs

Programs

  • Maple
    A338939:=n->map[fold=(`+`,0)](i->if(issqr(i*(n-i)),1,0),[$1..1/2*n]); seq(A338939(n),n=1..100); # Felix Huber, Oct 02 2024
  • Mathematica
    a[n_] := Count[IntegerPartitions[n, {2}], ?(IntegerQ @ Sqrt[Times @@ #] &)]; Array[a, 100] (* _Amiram Eldar, Nov 22 2020 *)
  • PARI
    a(n)=my(c=0);for(i=1,n-1,if((2*i<=n)&&issquare(i*(n-i)),c++));c
    for(n=1,100,print1(a(n),", ")) \\ Derek Orr, Nov 18 2020
    
  • PARI
    a(n) = sum(i=1, n-1, (2*i<=n) && issquare(i*(n-i))); \\ Michel Marcus, Dec 21 2020
    
  • PARI
    first(n) = {my(res = vector(n)); for(i = 1, n, d = divisors(i^2); for(i = (#d + 1)\2, #d, c = d[i] + d[#d + 1 - i]; if(c <= n, res[c]++ , next(2) ) ) ); res } \\ David A. Corneth, Dec 21 2020
    
  • Python
    from sympy.abc import x,y
    from sympy.solvers.diophantine.diophantine import diop_quadratic
    def A338939(n): return len(diop_quadratic(x*(n-x)-y**2))>>2 # Chai Wah Wu, Aug 21 2024

Formula

Let n = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 *...* q_s^b_s with t >= 0, a_i >= 0 for i = 1..r, where p_i == 1 (mod 4) and q_j == -1 (mod 4) for j = 1..s. Further, let A = (2a_1 + 1)*(2a_2 + 1)*...*(2a_r + 1). Then a(n) = (A-1)/2 for odd n and a(n) = A for even n.
a(n) = A338940(n) / A115878(n).