cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338946 Lengths of Cunningham chains of the second kind that are sorted by first prime in the chain.

Original entry on oeis.org

3, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Nov 17 2020

Keywords

Comments

Row lengths of A338944.

Examples

			We start with p = 2. Since 2(2) - 1 = 3 is prime, and further 2(3) - 1 = 5 is prime, but 2(5) - 1 is composite, we have chain length 3, so a(1) = 3.
p = 7 is the smallest prime that hasn't appeared in a chain thus far; since 2(7) - 1 = 13 is prime but 2(13) - 1 = 25 is composite, we have a chain of length 2, so a(2) = 2.
p = 11 is the smallest prime that hasn't appeared in a chain; 2(11) - 1 = 21 is composite, so we have a singleton chain, thus a(3) = 1, etc.
		

Crossrefs

Programs

  • Mathematica
    Block[{a = {2}, b = {}, j = 0, k, p}, Do[k = Length@ b + 1; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] - 1]; j++, While[! FreeQ[a, Set[p, Prime[k]]], k++]; AppendTo[b, j]; Set[j, 0]; Set[a, Append[a[[1 ;; -2]], p]]], {10^3}]; b]