A338951 Number of achiral colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
1, 6504, 8416440, 1455789440, 80139247500, 2125945744776, 34026498820524, 376045864704000, 3131319814422255, 20854395850585000, 115919421344402676, 554976171149122944, 2343894146343268610, 8896568181794053320
Offset: 1
Links
- Robert A. Russell, Table of n, a(n) for n = 1..30
- Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
Crossrefs
Programs
-
Mathematica
Table[(8n^4+8n^6+22n^7+6n^8+n^12+n^13+n^15+n^18)/48,{n,15}]
Formula
a(n) = (8*n^4 + 8*n^6 + 22*n^7 + 6*n^8 + n^12 + n^13 + n^15 + n^18) / 48.
a(n) = 1*C(n,1) + 6502*C(n,2) + 8396931*C(n,3) + 1422162700*C(n,4) + 72944399665*C(n,5) + 1666778870130*C(n,6) + 20777144613015*C(n,7) + 158973991255800*C(n,8) + 803196369526320*C(n,9) + 2806639981714800*C(n,10) + 6979192091902800*C(n,11) + 12538220293368000*C(n,12) + 16327662245294400*C(n,13) + 15272334392515200*C(n,14) + 10003736158416000*C(n,15) + 4357170994176000*C(n,16) + 1133753677056000*C(n,17) + 133382785536000*C(n,18), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
Comments