cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338955 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

1, 24124751133507584, 883287060208158070437496209, 27692675763559261523047959805034496, 18070082615414169898334284655914306640625, 1018202231744161700740376040914469837333037056
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. There are 576 elements in the automorphism group of the 24-cell that are not in its rotation group. They divide into 10 conjugacy classes. The first formula is obtained by averaging the edge (or face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Odd Cycle Indices Count Odd Cycle Indices
12 x_1^24x_2^36 96 x_1^2x_2^2x_3^2x_6^14
12 x_1^8x_2^44 96 x_3^8x_6^12
12+12 x_3^48 96 x_2^3x_6^15
72+72 x_4^24 96 x_6^16

Crossrefs

Cf. A338952 (oriented), A338953 (unoriented), A338954 (chiral), A338959 (exactly n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338967 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(8n^16+8n^18+16n^20+12n^24+2n^48+n^52+n^60)/48,{n,15}]

Formula

a(n) = (8*n^16 + 8*n^18 + 16*n^20 + 12*n^24 + 2*n^48 + n^52 + n^60) / 48.
a(n) = Sum_{j=1..Min(n,60)} A338959(n) * binomial(n,j).
a(n) = 2*A338953(n) - A338952(n) = A338952(n) - 2*A338954(n) = A338953(n) - A338954(n).